scispace - formally typeset
Search or ask a question
Author

Seung-Bok Choi

Bio: Seung-Bok Choi is an academic researcher from Inha University. The author has contributed to research in topics: Magnetorheological fluid & Damper. The author has an hindex of 54, co-authored 842 publications receiving 13440 citations. Previous affiliations of Seung-Bok Choi include State University of New York System & Michigan State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, three types of shear mode damper using magnetorheological fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers, and the damping performance of these shear modes MR dampers is characterized in terms of damping coefficient.
Abstract: In this study, three types of shear mode damper using magnetorheological (MR) fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers The damping performance of these shear mode MR dampers is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping at field-on status to the damping at field-off status For these three types of shear mode MR damper, the damping coefficient or dynamic range is derived using three different constitutive models: the Bingham–plastic, biviscous, and Herschel–Bulkley models The impact of constitutive behavior on shear mode MR dampers is theoretically presented and compared

99 citations

Journal ArticleDOI
TL;DR: In this article, a two-step amplification mechanism with flexure hinges and piezoelectric actuators is designed and verified experimentally by comparing the simulated magnification ratio with experimental data.

96 citations

Journal ArticleDOI
TL;DR: In this article, the optimal design of different types of magnetorheological brakes (MRBs) from which an optimal selection of MRB types is identified is identified, and the optimal solutions of MRBs constrained in different volumes are obtained based on the proposed optimization procedure.
Abstract: This research focuses on optimal design of different types of magnetorheological brakes (MRBs), from which an optimal selection of MRB types is identified. In the optimization, common types of MRB such as disc-type, drum-type, hybrid-types, and T-shaped type are considered. The optimization problem is to find the optimal value of significant geometric dimensions of the MRB that can produce a maximum braking torque. The MRB is constrained in a cylindrical volume of a specific radius and length. After a brief description of the configuration of MRB types, the braking torques of the MRBs are derived based on the Herschel–Bulkley model of the MR fluid. The optimal design of MRBs constrained in a specific cylindrical volume is then analysed. The objective of the optimization is to maximize the braking torque while the torque ratio (the ratio of maximum braking torque and the zero-field friction torque) is constrained to be greater than a certain value. A finite element analysis integrated with an optimization tool is employed to obtain optimal solutions of the MRBs. Optimal solutions of MRBs constrained in different volumes are obtained based on the proposed optimization procedure. From the results, discussions on the optimal selection of MRB types depending on constrained volumes are given.

93 citations

Journal ArticleDOI
TL;DR: In this paper, the performance characteristics of a semi-active ER (electro-rheological) suspension system were evaluated through the field test of a passenger car, and four ER shock absorbers were designed and manufactured for both front and rear parts, and their field-dependent damping properties were investigated.

92 citations

Journal ArticleDOI
01 Apr 2005
TL;DR: In this article, the feasibility of using piezoelectric materials in a power source for micro-electro-mechanical systems (MEMS) devices was presented. But the authors only evaluated the power generation of two different shapes of the piezofilms: square and circle.
Abstract: This paper presents the feasibility of using piezoelectric materials in a power source for micro-electro-mechanical systems (MEMS) devices. The finite element method (FEM) is adopted to evaluate the power generations of commercially available piezofilms that are subjected to a fluctuating pressure source (blood pressure). The accuracy of the results obtained from the FEM is verified by comparing with the corresponding results obtained from a theoretical analysis. In addition, an experiment is undertaken in order to evaluate the power generation of two different shapes of the piezofilms: square and circle. Finally, a brief discussion is made on the storage of experimentally harvested power and use of the MEMS applications.

92 citations


Cited by
More filters
Reference EntryDOI
31 Oct 2001
TL;DR: The American Society for Testing and Materials (ASTM) as mentioned in this paper is an independent organization devoted to the development of standards for testing and materials, and is a member of IEEE 802.11.
Abstract: The American Society for Testing and Materials (ASTM) is an independent organization devoted to the development of standards.

3,792 citations

Journal ArticleDOI
TL;DR: A comprehensive review of existing piezoelectric generators is presented in this paper, including impact coupled, resonant and human-based devices, including large scale discrete devices and wafer-scale integrated versions.
Abstract: This paper reviews the state-of-the art in vibration energy harvesting for wireless, self-powered microsystems. Vibration-powered generators are typically, although not exclusively, inertial spring and mass systems. The characteristic equations for inertial-based generators are presented, along with the specific damping equations that relate to the three main transduction mechanisms employed to extract energy from the system. These transduction mechanisms are: piezoelectric, electromagnetic and electrostatic. Piezoelectric generators employ active materials that generate a charge when mechanically stressed. A comprehensive review of existing piezoelectric generators is presented, including impact coupled, resonant and human-based devices. Electromagnetic generators employ electromagnetic induction arising from the relative motion between a magnetic flux gradient and a conductor. Electromagnetic generators presented in the literature are reviewed including large scale discrete devices and wafer-scale integrated versions. Electrostatic generators utilize the relative movement between electrically isolated charged capacitor plates to generate energy. The work done against the electrostatic force between the plates provides the harvested energy. Electrostatic-based generators are reviewed under the classifications of in-plane overlap varying, in-plane gap closing and out-of-plane gap closing; the Coulomb force parametric generator and electret-based generators are also covered. The coupling factor of each transduction mechanism is discussed and all the devices presented in the literature are summarized in tables classified by transduction type; conclusions are drawn as to the suitability of the various techniques.

2,834 citations

Journal ArticleDOI
TL;DR: The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans as mentioned in this paper, and the use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement.
Abstract: The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans. Current portable and wireless devices must be designed to include electrochemical batteries as the power source. The use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement. In the case of wireless sensors that are to be placed in remote locations, the sensor must be easily accessible or of a disposable nature to allow the device to function over extended periods of time. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The concept of power harvesting works towards developing self-powered devices that do not require replaceable power supplies. A number of sources of harvestable ambient energy exist, including waste heat, vibration, electromagnetic waves, wind, flowing water, and solar energy. While each of these sources of energy can be effectively used to power remote sensors, the structural and biological communities have placed an emphasis on scavenging vibrational energy with piezoelectric materials. This article will review recent literature in the field of power harvesting and present the current state of power harvesting in its drive to create completely self-powered devices.

2,438 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a concise point of departure for researchers and practitioners alike wishing to assess the current state of the art in the control and monitoring of civil engineering structures, and provide a link between structural control and other fields of control theory.
Abstract: This tutorial/survey paper: (1) provides a concise point of departure for researchers and practitioners alike wishing to assess the current state of the art in the control and monitoring of civil engineering structures; and (2) provides a link between structural control and other fields of control theory, pointing out both differences and similarities, and points out where future research and application efforts are likely to prove fruitful. The paper consists of the following sections: section 1 is an introduction; section 2 deals with passive energy dissipation; section 3 deals with active control; section 4 deals with hybrid and semiactive control systems; section 5 discusses sensors for structural control; section 6 deals with smart material systems; section 7 deals with health monitoring and damage detection; and section 8 deals with research needs. An extensive list of references is provided in the references section.

1,883 citations

Book
01 Dec 1988
TL;DR: In this paper, the basic processes in Atomization are discussed, and the drop size distributions of sprays are discussed.Preface 1.General Considerations 2.Basic Processes of Atomization 3.Drop Size Distributions of Sprays 4.Atomizers 5.Flow in Atomizers 6.AtOMizer Performance 7.External Spray Charcteristics 8.Drop Evaporation 9.Drop Sizing Methods Index
Abstract: Preface 1.General Considerations 2.Basic Processes in Atomization 3.Drop Size Distributions of Sprays 4.Atomizers 5.Flow in Atomizers 6.Atomizer Performance 7.External Spray Charcteristics 8.Drop Evaporation 9.Drop Sizing Methods Index

1,214 citations