scispace - formally typeset
Search or ask a question
Author

Seung-Hyun Cho

Bio: Seung-Hyun Cho is an academic researcher from Université catholique de Louvain. The author has contributed to research in topics: Transducer & Periplasmic space. The author has an hindex of 26, co-authored 96 publications receiving 1799 citations. Previous affiliations of Seung-Hyun Cho include Harvard University & UPRRP College of Natural Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: Through a comparative analysis of the oxidation process of Yap1 and PTPs, the mechanism of disulfide bond formation is proposed and likely confers efficiency in the redox regulation of the P TPs and protects cysteine‐sulfenic acid of PTPS from further oxidation.
Abstract: Protein tyrosine phosphatase (PTP) is a family of enzymes important for regulating cellular phosphorylation state. The oxidation and consequent inactivation of several PTPs by H(2)O(2) are well demonstrated. It is also shown that recovery of enzymatic activity depends on the availability of cellular reductants. Among these redox-regulated PTPs, PTEN, Cdc25 and low molecular weight PTP are known to form a disulfide bond between two cysteines, one in the active site and the other nearby, during oxidation by H(2)O(2). The disulfide bond likely confers efficiency in the redox regulation of the PTPs and protects cysteine-sulfenic acid of PTPs from further oxidation. In this review, through a comparative analysis of the oxidation process of Yap1 and PTPs, we propose the mechanism of disulfide bond formation in the PTPs.

189 citations

Journal ArticleDOI
18 Dec 2014-Cell
TL;DR: RcsF senses envelope damage by monitoring the activity of the Bam machinery, and is activated when BamA fails to bind RcsF and funnel it to OmpA, which is the inner membrane protein IgaA.
Abstract: The cell envelope protects bacteria from their surroundings. Defects in its integrity or assembly are sensed by signal transduction systems, allowing cells to rapidly adjust. The Rcs phosphorelay responds to outer membrane (OM)- and peptidoglycan-related stress in enterobacteria. We elucidated how the OM lipoprotein RcsF, the upstream Rcs component, senses envelope stress and activates the signaling cascade. RcsF interacts with BamA, the major component of the β-barrel assembly machinery. In growing cells, BamA continuously funnels RcsF through the β-barrel OmpA, displaying RcsF on the cell surface. This process spatially separates RcsF from the downstream Rcs component, which we show is the inner membrane protein IgaA. The Rcs system is activated when BamA fails to bind RcsF and funnel it to OmpA. Newly synthesized RcsF then remains periplasmic, interacting with IgaA to activate the cascade. Thus RcsF senses envelope damage by monitoring the activity of the Bam machinery.

143 citations

Journal ArticleDOI
TL;DR: A new magnetostrictive transducer configuration using several pieces of nickel strips installed at 45 degrees with respect to the pipe axis to improve the transduction efficiency and to avoid the cumbersome premagnetization is proposed.
Abstract: For the efficient long-range nondestructive structural health inspection of pipes, guided waves have become widely used. Among the various guided wave modes, the torsional wave is most preferred since its first branch is nondispersive. Our objective in this work is to develop a new magnetostrictive transducer configuration to transmit and receive torsional waves in cylindrical waveguides. The conventional magnetostrictive transducer for the generation and measurement of torsional waves consists of solenoid coils and a nickel strip bonded circumferentially to test pipes. The strip must be premagnetized by a permanent magnet before actual measurements. Because of the premagnetization, the transducer is not suitable for the long-term on-line monitoring of pipes buried underground. To avoid the cumbersome premagnetization and to improve the transduction efficiency, we propose a new transducer configuration using several pieces of nickel strips installed at 45° with respect to the pipe axis. If a static bias magnetic field is also applied, the transducer output can be substantially increased. Several experiments were conducted to study the performance of the proposed transducer configuration. The proposed transducer configuration was also applied for damage detection in an aluminum pipe.

97 citations

Journal ArticleDOI
TL;DR: The results demonstrate the physiological importance of the size of the periplasm and reveal that strict control over the IM-to-OM distance is required for effective envelope surveillance and protection, suggesting that cellular architecture and the structure of transenvelope protein complexes have been evolutionarily co-optimised for correct function.
Abstract: The cell envelope of gram-negative bacteria, a structure comprising an outer (OM) and an inner (IM) membrane, is essential for life. The OM and the IM are separated by the periplasm, a compartment that contains the peptidoglycan. The OM is tethered to the peptidoglycan via the lipoprotein, Lpp. However, the importance of the envelope's multilayered architecture remains unknown. Here, when we removed physical coupling between the OM and the peptidoglycan, cells lost the ability to sense defects in envelope integrity. Further experiments revealed that the critical parameter for the transmission of stress signals from the envelope to the cytoplasm, where cellular behaviour is controlled, is the IM-to-OM distance. Augmenting this distance by increasing the length of the lipoprotein Lpp destroyed signalling, whereas simultaneously increasing the length of the stress-sensing lipoprotein RcsF restored signalling. Our results demonstrate the physiological importance of the size of the periplasm. They also reveal that strict control over the IM-to-OM distance is required for effective envelope surveillance and protection, suggesting that cellular architecture and the structure of transenvelope protein complexes have been evolutionarily co-optimised for correct function. Similar strategies are likely at play in cellular compartments surrounded by 2 concentric membranes, such as chloroplasts and mitochondria.

93 citations

Journal ArticleDOI
TL;DR: Single-molecule force-clamp spectroscopy is used to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different Trx enzymes and identifies the evolution of the binding groove as an important factor controlling the Chemistry of TrX catalysis.
Abstract: Thioredoxins (Trxs) reduce disulfide bonds via a Michaelis-Menten mechanism. Upon substrate stretching at high forces, an SN2 reaction can be used by bacterial Trxs. A third mechanism, single-electron transfer, is now revealed in Trxs of either bacterial or eukaryotic origin, and is correlated with the depth of the Trx substrate-binding groove. Thioredoxins (Trxs) are oxidoreductase enzymes, present in all organisms, that catalyze the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single-molecule level. Here we use single-molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different Trx enzymes. All Trxs show a characteristic Michaelis-Menten mechanism that is detected when the disulfide bond is stretched at low forces, but at high forces, two different chemical behaviors distinguish bacterial-origin from eukaryotic-origin Trxs. Eukaryotic-origin Trxs reduce disulfide bonds through a single-electron transfer reaction (SET), whereas bacterial-origin Trxs show both nucleophilic substitution (SN2) and SET reactions. A computational analysis of Trx structures identifies the evolution of the binding groove as an important factor controlling the chemistry of Trx catalysis.

85 citations


Cited by
More filters
01 Sep 1955
TL;DR: In this paper, the authors restrict their attention to the ferrites and a few other closely related materials, which are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present.
Abstract: In this chapter, we will restrict our attention to the ferrites and a few other closely related materials. The great interest in ferrites stems from their unique combination of a spontaneous magnetization and a high electrical resistivity. The observed magnetization results from the difference in the magnetizations of two non-equivalent sub-lattices of the magnetic ions in the crystal structure. Materials of this type should strictly be designated as “ferrimagnetic” and in some respects are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present. We shall not adhere to this special nomenclature except to emphasize effects, which are due to the existence of the sub-lattices.

2,659 citations

Journal ArticleDOI
TL;DR: The current understanding of how disturbance in redox homeostasis may affect cell death and contribute to the development of diseases such as cancer and degenerative disorders is reviewed and the basic knowledge on redox regulation of cell survival can be used to develop strategies for the treatment or prevention of those diseases.
Abstract: Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in regulation of cell survival. In general, moderate levels of ROS/RNS may function as signals to promote cell proliferation and survival, whereas severe increase of ROS/RNS can induce cell death. Under physiologic conditions, the balance between generation and elimination of ROS/RNS maintains the proper function of redox-sensitive signaling proteins. Normally, the redox homeostasis ensures that the cells respond properly to endogenous and exogenous stimuli. However, when the redox homeostasis is disturbed, oxidative stress may lead to aberrant cell death and contribute to disease development. This review focuses on the roles of key transcription factors, signal-transduction pathways, and cell-death regulators in affecting cell survival, and how the redox systems regulate the functions of these molecules. The current understanding of how disturbance in redox homeostasis may affect cell death and contribute to the development of diseases such as cancer and degenerative disorders is reviewed. We also discuss how the basic knowledge on redox regulation of cell survival can be used to develop strategies for the treatment or prevention of those diseases. Antioxid. Redox Signal. 10, 1343–1374.

1,536 citations

Journal ArticleDOI
TL;DR: The molecular mechanisms by which hydrogen peroxide is sensed and the increasing evidence that antioxidant enzymes play multiple, key roles as sensors and regulators of signal transduction in response to hydrogen peroxy are discussed.
Abstract: It is well established that oxidative stress is an important cause of cell damage associated with the initiation and progression of many diseases. Consequently, all air-living organisms contain antioxidant enzymes that limit oxidative stress by detoxifying reactive oxygen species, including hydrogen peroxide. However, in eukaryotes, hydrogen peroxide also has important roles as a signaling molecule in the regulation of a variety of biological processes. Here, we will discuss the molecular mechanisms by which hydrogen peroxide is sensed and the increasing evidence that antioxidant enzymes play multiple, key roles as sensors and regulators of signal transduction in response to hydrogen peroxide.

1,464 citations

01 Jan 2007
TL;DR: The terms "antioxidant", "oxidative stress" and "oxoidative damage" are widely used but rarely defined as discussed by the authors, and a brief review attempts to define them and to examine the ways in which oxidative stress and oxidative damage can affect cell behaviour both in vivo and in cell culture, using cancer as an example.
Abstract: The terms 'antioxidant', 'oxidative stress' and 'oxidative damage' are widely used but rarely defined. This brief review attempts to define them and to examine the ways in which oxidative stress and oxidative damage can affect cell behaviour both in vivo and in cell culture, using cancer as an example.

1,309 citations

Journal ArticleDOI
TL;DR: It is proposed that genes that control H2O2 production are selected determinants of lifespan and not simply the result of a genetic programme or the by-product of physiological processes.
Abstract: The reactive oxygen species that are generated by mitochondrial respiration, including hydrogen peroxide (H2O2), are potent inducers of oxidative damage and mediators of ageing. It is not clear, however, whether oxidative stress is the result of a genetic programme or the by-product of physiological processes. Recent findings demonstrate that a fraction of mitochondrial H2O2, produced by a specialized enzyme as a signalling molecule in the pathway of apoptosis, induces intracellular oxidative stress and accelerates ageing. We propose that genes that control H2O2 production are selected determinants of lifespan.

1,277 citations