scispace - formally typeset
Search or ask a question
Author

Seung-Lee Kim

Bio: Seung-Lee Kim is an academic researcher from Korea Astronomy and Space Science Institute. The author has contributed to research in topics: Gravitational microlensing & Light curve. The author has an hindex of 24, co-authored 161 publications receiving 3125 citations. Previous affiliations of Seung-Lee Kim include Universidad Mayor & Korea University of Science and Technology.


Papers
More filters
Journal ArticleDOI
16 Oct 2017-Nature
TL;DR: The detection of X-ray emission at a location coincident with the kilonova transient provides the missing observational link between short γ-ray bursts and gravitational waves from neutron-star mergers, and gives independent confirmation of the collimated nature of the γ,ray-burst emission.
Abstract: Detection of X-ray emission at a location coincident with the kilonova transient of the gravitational-wave event GW170817 provides the missing observational link between short gamma-ray bursts and gravitational waves from neutron-star mergers. Merging neutron stars are potential sources of gravitational waves and have long been predicted to produce jets of material as part of a low-luminosity transient known as a 'kilonova'. There is growing evidence that neutron-star mergers also give rise to short, hard gamma-ray bursts. A group of papers in this issue report observations of a transient associated with the gravitational-wave event GW170817—a signature of two neutron stars merging and a gamma-ray flash—that was detected in August 2017. The observed gamma-ray, X-ray, optical and infrared radiation signatures support the predictions of an outflow of matter from double neutron-star mergers and present a clear origin for gamma-ray bursts. Previous predictions differ over whether the jet material would combine to form light or heavy elements. These papers now show that the early part of the outflow was associated with lighter elements whereas the later observations can be explained by heavier elements, the origins of which have been uncertain. However, one paper (by Stephen Smartt and colleagues) argues that only light elements are needed for the entire event. Additionally, Eleonora Troja and colleagues report X-ray observations and radio emissions that suggest that the 'kilonova' jet was observed off-axis, which could explain why gamma-ray-burst detections are seen as dim. A long-standing paradigm in astrophysics is that collisions—or mergers—of two neutron stars form highly relativistic and collimated outflows (jets) that power γ-ray bursts of short (less than two seconds) duration1,2,3. The observational support for this model, however, is only indirect4,5. A hitherto outstanding prediction is that gravitational-wave events from such mergers should be associated with γ-ray bursts, and that a majority of these bursts should be seen off-axis, that is, they should point away from Earth6,7. Here we report the discovery observations of the X-ray counterpart associated with the gravitational-wave event GW170817. Although the electromagnetic counterpart at optical and infrared frequencies is dominated by the radioactive glow (known as a ‘kilonova’) from freshly synthesized rapid neutron capture (r-process) material in the merger ejecta8,9,10, observations at X-ray and, later, radio frequencies are consistent with a short γ-ray burst viewed off-axis7,11. Our detection of X-ray emission at a location coincident with the kilonova transient provides the missing observational link between short γ-ray bursts and gravitational waves from neutron-star mergers, and gives independent confirmation of the collimated nature of the γ-ray-burst emission.

727 citations

Journal ArticleDOI
TL;DR: The Korea Microlensing Telescope Network (KMTNet) as mentioned in this paper is a wide-field photometric system installed by the Korea Astronomy and Space Science Institute (KASI).
Abstract: The Korea Microlensing Telescope Network (KMTNet) is a wide-field photometric system installed by the Korea Astronomy and Space Science Institute (KASI). Here, we present the overall technical specifications of the KMTNet observation system, test observation results, data transfer and image processing procedure, and finally, the KMTNet science programs. The system consists of three 1.6 m wide-field optical telescopes equipped with mosaic CCD cameras of 18k by 18k pixels. Each telescope provides a 2.0 by 2.0 square degree field of view. We have finished installing all three telescopes and cameras sequentially at the Cerro-Tololo Inter-American Observatory (CTIO) in Chile, the South African Astronomical Observatory (SAAO) in South Africa, and the Siding Spring Observatory (SSO) in Australia. This network of telescopes, which is spread over three different continents at a similar latitude of about -30 degrees, enables 24-hour continuous monitoring of targets observable in the Southern Hemisphere. The test observations showed good image quality that meets the seeing requirement of less than 1.0 arcsec in I-band. All of the observation data are transferred to the KMTNet data center at KASI via the international network communication and are processed with the KMTNet data pipeline. The primary scientific goal of the KMTNet is to discover numerous extrasolar planets toward the Galactic bulge by using the gravitational microlensing technique, especially earth-mass planets in the habitable zone. During the non-bulge season, the system is used for wide-field photometric survey science on supernovae, asteroids, and external galaxies.

278 citations

Journal ArticleDOI
TL;DR: For the very short period subdwarf B eclipsing binary HW Vir, this article presented new CCD photometry made from 2000 through 2008, showing sharp eclipses and a striking reflection effect, were analyzed simultaneously with previously published radial velocity data.
Abstract: For the very short period subdwarf B eclipsing binary HW Vir, we present new CCD photometry made from 2000 through 2008. In order to obtain consistency of the binary parameters, our new light curves, showing sharp eclipses and a striking reflection effect, were analyzed simultaneously with previously published radial velocity data. The secondary star parameters of M 2 = 0.14 M ?, R 2 = 0.18 R ?, and T 2 = 3084 K are consistent with those of an M6-7 main-sequence star. A credibility issue regarding bolometric corrections is emphasized. More than 250 times of minimum light, including our 41 timings and spanning more than 24 yr, were used for a period study. From a detailed analysis of the O ? C diagram, it emerged that the orbital period of HW Vir has varied as a combination of a downward-opening parabola and two sinusoidal variations, with cycle lengths of P 3 = 15.8 yr and P 4 = 9.1 yr and semiamplitudes of K 3 = 77 s and K 4 = 23 s, respectively. The continuous period decrease with a rate of ?8.28 ? 10?9 days yr?1 may be produced by angular momentum loss due to magnetic stellar wind braking but not by gravitational radiation. Of the possible causes of the cyclical components of the period change, apsidal motion and magnetic period modulation can be ruled out. The most reasonable explanation of both cyclical variations is a pair of light-travel-time effects driven by the presence of two substellar companions with projected masses of M 3sin i 3 = 19.2 M Jup and M 4sin i 4 = 8.5 M Jup. The two objects are the first circumbinary planets known to have been formed in a protoplanetary disk as well the first ones discovered by using the eclipse-timing method. The detection implies that planets could be common around binary stars just as are planets around single stars and demonstrates that planetary systems formed in a circumbinary disk can survive over long timescales. Depending on the thermal inertia of their massive atmospheres, the hemispheres of the planets turned toward the stars can experience substantial reciprocating temperature changes during the minutes-long primary eclipse intervals.

251 citations

Journal ArticleDOI
TL;DR: In this paper, an analysis of eclipsing binaries containing non-radial pulsators is presented to combine two different and independent sources of information on the internal structure and evolutionary sta tus of the components, and the effects of tidal forces on pulsations.
Abstract: The analysis of eclipsing binaries containing non-radial pulsators allows: i) to combine two different and independent sources of information on the internal structure and evolutionary sta tus of the components, and ii) to study the effects of tidal forces on pulsations KIC 3858884 is a bright Kepler target whose light curve shows deep eclipses, complex pulsation patterns with pulsation frequencies typical ofδ Sct, and a highly eccentric orbit We present the result of th e analysis of Kepler photometry and of high resolution phaseresolved spectroscopy Spectroscopy yielded both the radial velocity curves and, after spectral disentangling, the p rimary component effective temperature and metallicity, and line-of-sight pro jected rotational velocities The Kepler light curve was analyzed with an iterative procedure devised to disentangle eclipses fro m pulsations which takes into account the visibility of the pulsating star during eclipses The search for the best set of binary parameters was performed combining the synthetic light curve models with a genetic minimization algorithm, which yielded a robust and accurate determination of the system parameters The binary components have very similar masses (188 and 186 M⊙) and effective temperatures (6800 and 6600 K), but different radii (345 and 305 R⊙) The comparison with the theoretical models evidenced a somewhat different evolutionary status of the components and the need of introducing overshooting in the models The pulsation analysis indicates a hybrid nature of the pulsating (secondary) component, the corresponding high order g-modes might be excited by an intrinsic mechanism or by tidal forces

81 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the multi-wavelength data to characterize the host galaxy property and its distance to examine if the properties of NGC 4993 are consistent with this picture.
Abstract: Recently, the optical counterpart of a gravitational wave source GW170817 has been identified in NGC 4993 galaxy. Together with evidence from observations in electromagnetic waves, the event has been suggested as a result of a merger of two neutron stars. We analyze the multi-wavelength data to characterize the host galaxy property and its distance to examine if the properties of NGC 4993 are consistent with this picture. Our analysis shows that NGC 4993 is a bulge-dominated galaxy with reff ~ 2-3 kpc and the Sersic index of n = 3-4 for the bulge component. The spectral energy distribution from 0.15 to 24 micron indicates that this galaxy has no significant ongoing star formation, the mean stellar mass of (0.3 - 1.2) times 10^11 Msun,the mean stellar age greater than ~3 Gyr, and the metallicity of about 20% to 100% of solar abundance. Optical images reveal dust lanes and extended features that suggest a past merging activity. Overall, NGC 4993 has characteristics of normal, but slightly disturbed elliptical galaxies. Furthermore, we derive the distance to NGC 4993 with the fundamental plane relation using 17 parameter sets of 7 different filters and the central stellar velocity dispersion from literature, finding an angular diameter distance of 37.7 +- 8.7 Mpc. NGC 4993 is similar to some host galaxies of short gamma-ray bursts but much different from those of long gamma-ray bursts, supporting the picture of GW170817 as a result of a merger of two NSs.

79 citations


Cited by
More filters
Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1235 moreInstitutions (132)
TL;DR: This analysis expands upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars.
Abstract: On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars. Our analysis employs two methods: the use of equation-of-state-insensitive relations between various macroscopic properties of the neutron stars and the use of an efficient parametrization of the defining function pðρÞ of the equation of state itself. From the LIGO and Virgo data alone and the first method, we measure the two neutron star radii as R1 ¼ 10.8 þ2.0 −1.7 km for the heavier star and R2 ¼ 10.7 þ2.1 −1.5 km for the lighter star at the 90% credible level. If we additionally require that the equation of state supports neutron stars with masses larger than 1.97 M⊙ as required from electromagnetic observations and employ the equation-of-state parametrization, we further constrain R1 ¼ 11.9 þ1.4 −1.4 km and R2 ¼ 11.9 þ1.4 −1.4 km at the 90% credible level. Finally, we obtain constraints on pðρÞ at supranuclear densities, with pressure at twice nuclear saturation density measured at 3.5 þ2.7 −1.7 × 1034 dyn cm−2 at the 90% level.

1,595 citations

Book
01 Jan 1965

1,239 citations

Journal ArticleDOI
Eric C. Bellm1, Shrinivas R. Kulkarni2, Matthew J. Graham2, Richard Dekany2, Roger M. H. Smith2, Reed Riddle2, Frank J. Masci2, George Helou2, Thomas A. Prince2, Scott M. Adams2, Cristina Barbarino3, Tom A. Barlow2, James Bauer4, Ron Beck2, Justin Belicki2, Rahul Biswas3, Nadejda Blagorodnova2, Dennis Bodewits4, Bryce Bolin1, V. Brinnel5, Tim Brooke2, Brian D. Bue2, Mattia Bulla3, Rick Burruss2, S. Bradley Cenko4, S. Bradley Cenko6, Chan-Kao Chang7, Andrew J. Connolly1, Michael W. Coughlin2, John Cromer2, Virginia Cunningham4, Kaushik De2, Alex Delacroix2, Vandana Desai2, Dmitry A. Duev2, Gwendolyn Eadie1, Tony L. Farnham4, Michael Feeney2, Ulrich Feindt3, David Flynn2, Anna Franckowiak, Sara Frederick4, Christoffer Fremling2, Avishay Gal-Yam8, Suvi Gezari4, Matteo Giomi5, Daniel A. Goldstein2, V. Zach Golkhou1, Ariel Goobar3, Steven Groom2, Eugean Hacopians2, David Hale2, John Henning2, Anna Y. Q. Ho2, David Hover2, Justin Howell2, Tiara Hung4, Daniela Huppenkothen1, David Imel2, Wing-Huen Ip9, Wing-Huen Ip7, Željko Ivezić1, Edward Jackson2, Lynne Jones1, Mario Juric1, Mansi M. Kasliwal2, Shai Kaspi10, Stephen Kaye2, Michael S. P. Kelley4, Marek Kowalski5, Emily Kramer2, Thomas Kupfer11, Thomas Kupfer2, Walter Landry2, Russ R. Laher2, Chien De Lee7, Hsing Wen Lin7, Hsing Wen Lin12, Zhong-Yi Lin7, Ragnhild Lunnan3, Ashish Mahabal2, Peter H. Mao2, Adam A. Miller13, Adam A. Miller14, Serge Monkewitz2, Patrick J. Murphy2, Chow-Choong Ngeow7, Jakob Nordin5, Peter Nugent15, Peter Nugent16, Eran O. Ofek8, Maria T. Patterson1, Bryan E. Penprase17, Michael Porter2, L. Rauch, Umaa Rebbapragada2, Daniel J. Reiley2, Mickael Rigault18, Hector P. Rodriguez2, Jan van Roestel19, Ben Rusholme2, J. V. Santen, Steve Schulze8, David L. Shupe2, Leo Singer4, Leo Singer6, Maayane T. Soumagnac8, Robert Stein, Jason Surace2, Jesper Sollerman3, Paula Szkody1, Francesco Taddia3, Scott Terek2, Angela Van Sistine20, Sjoert van Velzen4, W. Thomas Vestrand21, Richard Walters2, Charlotte Ward4, Quanzhi Ye2, Po-Chieh Yu7, Lin Yan2, Jeffry Zolkower2 
TL;DR: The Zwicky Transient Facility (ZTF) as mentioned in this paper is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope, which provides a 47 deg^2 field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey.
Abstract: The Zwicky Transient Facility (ZTF) is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope. A custom-built wide-field camera provides a 47 deg^2 field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey, the Palomar Transient Factory. We describe the design and implementation of the camera and observing system. The ZTF data system at the Infrared Processing and Analysis Center provides near-real-time reduction to identify moving and varying objects. We outline the analysis pipelines, data products, and associated archive. Finally, we present on-sky performance analysis and first scientific results from commissioning and the early survey. ZTF's public alert stream will serve as a useful precursor for that of the Large Synoptic Survey Telescope.

1,009 citations

Journal ArticleDOI
TL;DR: A review of the current knowledge of the occurrence of planets around other stars, their orbital distances and eccentricities, the orbital spacings and mutual inclinations in multi-planet systems, the orientation of the host star's rotation axis, and the properties of planets in binary-star systems can be found in this paper.
Abstract: The basic geometry of the Solar System—the shapes, spacings, and orientations of the planetary orbits—has long been a subject of fascination as well as inspiration for planet-formation theories. For exoplanetary systems, those same properties have only recently come into focus. Here we review our current knowledge of the occurrence of planets around other stars, their orbital distances and eccentricities, the orbital spacings and mutual inclinations in multiplanet systems, the orientation of the host star's rotation axis, and the properties of planets in binary-star systems.

824 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy3  +1135 moreInstitutions (139)
TL;DR: In this article, the authors present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves.
Abstract: We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5– 20 deg2 requires at least three detectors of sensitivity within a factor of ∼2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

804 citations