scispace - formally typeset
Search or ask a question
Author

Seung Woo Cho

Bio: Seung Woo Cho is an academic researcher from Yonsei University. The author has contributed to research in topics: Self-healing hydrogels & Stem cell. The author has an hindex of 47, co-authored 197 publications receiving 8070 citations. Previous affiliations of Seung Woo Cho include Seoul National University & Harvard University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors identify the optimal substrates within a range of different polymeric surfaces to support the growth and self-renewal of human embryonic stem cells from fully dissociated single cells.
Abstract: Structure–property relationships between material properties and stem cell behaviour are investigated using high-throughput methods. The data identify the optimal substrates within a range of different polymeric surfaces to support the growth and self-renewal of human embryonic stem cells from fully dissociated single cells.

492 citations

01 Aug 2010
TL;DR: These analyses show that optimal hES cell substrates are generated from monomers with high acrylate content, have a moderate wettability, and employ integrin αvβ3 and αv β5 engagement with adsorbed vitronectin to promote colony formation.
Abstract: Structure–property relationships between material properties and stem cell behaviour are investigated using high-throughput methods. The data identify the optimal substrates within a range of different polymeric surfaces to support the growth and self-renewal of human embryonic stem cells from fully dissociated single cells.

468 citations

Journal ArticleDOI
TL;DR: A bioinspired, tissue‐adhesive HA hydrogel that overcomes the limitations of current hyaluronic acid hydrogels through its improved biocompatibility and potential for minimally invasive cell transplantation is described.
Abstract: Current hyaluronic acid (HA) hydrogel systems often cause cytotoxicity to encapsulated cells and lack the adhesive property required for effective localization of transplanted cells in vivo. In addition, the injection of hydrogel into certain organs (e.g., liver, heart) induces tissue damage and hemorrhage. In this study, we describe a bioinspired, tissue-adhesive hydrogel that overcomes the limitations of current HA hydrogels through its improved biocompatibility and potential for minimally invasive cell transplantation. HA functionalized with an adhesive catecholamine motif of mussel foot protein forms HA-catechol (HA-CA) hydrogel via oxidative crosslinking. HA-CA hydrogel increases viability, reduces apoptosis, and enhances the function of two types of cells (human adipose-derived stem cells and hepatocytes) compared with a typical HA hydrogel crosslinked by photopolymerization. Due to the strong tissue adhesiveness of the HA-CA hydrogel, cells are easily and efficiently transplanted onto various tissues (e.g., liver and heart) without the need for injection. Stem cell therapy using the HA-CA hydrogel increases angiogenesis in vivo, leading to improved treatment of ischemic diseases. HA-CA hydrogel also improved hepatic functions of transplanted hepatocytes in vivo. Thus, this bioinspired, tissue-adhesive HA hydrogel can enhance the efficacy of minimally invasive cell therapy.

332 citations

Journal ArticleDOI
TL;DR: It is demonstrated that human adipose-derived stromal cells (hADSCs) cultured and grafted as spheroids exhibit improved therapeutic efficacy for ischemia treatment and spheroid-based cell delivery could be a simple and effective strategy for improving stem cell therapy for ischemic diseases.

321 citations

Journal ArticleDOI
TL;DR: It is demonstrated that polydopamine coating facilitates highly efficient, simple immobilization of neurotrophic growth factors and adhesion peptides onto polymer substrates, and can provide a versatile platform technology for developing chemically defined, safe, functional substrates and scaffolds for therapeutic applications of human NSCs.

305 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Polycaprolactone (PCL) was used in the biomaterials field and a number of drug-delivery devices for up to 3-4 years.

3,070 citations

Journal ArticleDOI
TL;DR: A microfluidic cell culture device created with microchip manufacturing methods that contains continuously perfused chambers inhabited by living cells arranged to simulate tissue- and organ-level physiology has great potential to advance the study of tissue development, organ physiology and disease etiology.
Abstract: Organ-level physiology is recapitulated in vitro by culturing cells in perfused, microfluidic devices.

2,339 citations

Journal ArticleDOI
TL;DR: The properties of hydrogels that are important for tissue engineering applications and the inherent material design constraints and challenges are discussed.
Abstract: Hydrogels, due to their unique biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics, have been the material of choice for many applications in regenerative medicine. They can serve as scaffolds that provide structural integrity to tissue constructs, control drug and protein delivery to tissues and cultures, and serve as adhesives or barriers between tissue and material surfaces. In this work, the properties of hydrogels that are important for tissue engineering applications and the inherent material design constraints and challenges are discussed. Recent research involving several different hydrogels polymerized from a variety of synthetic and natural monomers using typical and novel synthetic methods are highlighted. Finally, special attention is given to the microfabrication techniques that are currently resulting in important advances in the field.

2,339 citations

Journal ArticleDOI
TL;DR: This work aims to provide a comprehensive overview of electrospun nanofibers, including the principle, methods, materials, and applications, and highlights the most relevant and recent advances related to the applications by focusing on the most representative examples.
Abstract: Electrospinning is a versatile and viable technique for generating ultrathin fibers. Remarkable progress has been made with regard to the development of electrospinning methods and engineering of electrospun nanofibers to suit or enable various applications. We aim to provide a comprehensive overview of electrospinning, including the principle, methods, materials, and applications. We begin with a brief introduction to the early history of electrospinning, followed by discussion of its principle and typical apparatus. We then discuss its renaissance over the past two decades as a powerful technology for the production of nanofibers with diversified compositions, structures, and properties. Afterward, we discuss the applications of electrospun nanofibers, including their use as "smart" mats, filtration membranes, catalytic supports, energy harvesting/conversion/storage components, and photonic and electronic devices, as well as biomedical scaffolds. We highlight the most relevant and recent advances related to the applications of electrospun nanofibers by focusing on the most representative examples. We also offer perspectives on the challenges, opportunities, and new directions for future development. At the end, we discuss approaches to the scale-up production of electrospun nanofibers and briefly discuss various types of commercial products based on electrospun nanofibers that have found widespread use in our everyday life.

2,289 citations