scispace - formally typeset
Search or ask a question
Author

Seung-Woo Kim

Bio: Seung-Woo Kim is an academic researcher from KAIST. The author has contributed to research in topics: Interferometry & Laser. The author has an hindex of 36, co-authored 330 publications receiving 7014 citations. Previous affiliations of Seung-Woo Kim include Korea Institute of Science and Technology.


Papers
More filters
Journal ArticleDOI
Seungchul Kim1, Jonghan Jin1, Young-Jin Kim1, In-Yong Park1, Yunseok Kim1, Seung-Woo Kim1 
05 Jun 2008-Nature
TL;DR: This work demonstrates a method of high-harmonic generation that requires no extra cavities by exploiting the local field enhancement induced by resonant plasmons within a metallic nanostructure consisting of bow-tie-shaped gold elements on a sapphire substrate.
Abstract: High-harmonic generation by focusing a femtosecond laser onto a gas is a well-known method of producing coherent extreme-ultraviolet (EUV) light. This nonlinear conversion process requires high pulse intensities, greater than 10(13) W cm(-2), which are not directly attainable using only the output power of a femtosecond oscillator. Chirped-pulse amplification enables the pulse intensity to exceed this threshold by incorporating several regenerative and/or multi-pass amplifier cavities in tandem. Intracavity pulse amplification (designed not to reduce the pulse repetition rate) also requires a long cavity. Here we demonstrate a method of high-harmonic generation that requires no extra cavities. This is achieved by exploiting the local field enhancement induced by resonant plasmons within a metallic nanostructure consisting of bow-tie-shaped gold elements on a sapphire substrate. In our experiment, the output beam emitted from a modest femtosecond oscillator (100-kW peak power, 1.3-nJ pulse energy and 10-fs pulse duration) is directly focused onto the nanostructure with a pulse intensity of only 10(11) W cm(-2). The enhancement factor exceeds 20 dB, which is sufficient to produce EUV wavelengths down to 47 nm by injection with an argon gas jet. The method could form the basis for constructing laptop-sized EUV light sources for advanced lithography and high-resolution imaging applications.

1,320 citations

Journal ArticleDOI
TL;DR: In this paper, a review of measurement technologies for precision positioning in manufacturing industries is presented, followed by a discussion on traceability and standards, and some advanced applications of measurement technology for manufacturing industries.
Abstract: Precision positioning of an object relative to a reference point is a common task in many activities of production engineering. Sensor technologies for single axis measurement, either linear or rotary, which form the fundamentals of measurement technologies for precision positioning, are reviewed. Multi-axis coordinate measurement methods such as triangulation and multilateration, as well as Cartesian and polar systems for specifying the position in a plane or three-dimensional (3D) space are then presented, followed by a discussion on traceability and standards. Some advanced applications of measurement technologies for precision positioning in manufacturing industries are also demonstrated.

340 citations

Journal ArticleDOI
Joo-hyung Lee1, Young-Jin Kim1, Keunwoo Lee1, Sang-Hyun Lee1, Seung-Woo Kim1 
TL;DR: In this paper, the authors improved the precision of time-of-flight measurements from several hundreds of micrometres to the nanometre regime by timing femtosecond pulses through phase-locking control of the pulse repetition rate using the optical crosscorrelation technique.
Abstract: The time-of-flight of light pulses has long been used as a direct measure of distance1,2, but state-of-the-art measurement precision using conventional light pulses or microwaves peaks at only several hundreds of micrometres3,4. Here, we improve the time-of-flight precision to the nanometre regime by timing femtosecond pulses through phase-locking control of the pulse repetition rate using the optical cross-correlation technique5,6. Our experiment shows an Allan deviation of 117 nm in measuring a 0.7-km distance in air at a sampling rate of 5 ms once the pulse repetition is phase-locked, which reduces to 7 nm as the averaging time increases to 1 s. This enhanced capability is maintained at long range without periodic ambiguity, and is well suited to lidar applications such as geodetic surveying7, range finders8 and absolute altimeters9. This method could also be applied to future space missions involving formation-flying satellites for synthetic aperture imaging10,11 and remote experiments related to general relativity theory12. Scientists improve the precision of time-of-flight measurements from several hundreds of micrometres to the nanometre regime by timing femtosecond pulses through phase-locking control of the pulse repetition rate using the optical cross-correlation technique. This result looks set to benefit synthetic aperture imaging for future space missions of formation-flying satellites and remote experiments involving the general theory of relativity.

336 citations

Journal ArticleDOI
Seung-Woo Kim1, Gee-Hong Kim1
TL;DR: An extensive frequency-domain analysis of multiple reflection is performed to allow both the top and the bottom interfaces of a thin-film layer to be measured independently at the same time by the nonlinear least-squares technique.
Abstract: White-light scanning interferometry is increasingly used for precision profile metrology of engineering surfaces, but its current applications are limited primarily to opaque surfaces with relatively simple optical reflection behavior. A new attempt is made to extend the interferometric method to the thickness-profile measurement of transparent thin-film layers. An extensive frequency-domain analysis of multiple reflection is performed to allow both the top and the bottom interfaces of a thin-film layer to be measured independently at the same time by the nonlinear least-squares technique. This rigorous approach provides not only point-by-point thickness probing but also complete volumetric film profiles digitized in three dimensions.

301 citations

Journal ArticleDOI
TL;DR: In this article, plasmonic nanofocusing of near-infrared pulses in metallic tapered gap waveguides was used to generate ultrashort extreme-ultraviolet pulses.
Abstract: Researchers use plasmonic nanofocusing of near-infrared pulses in metallic tapered gap waveguides to generate ultrashort extreme-ultraviolet pulses. They calculate that the electromagnetic field intensity is around 350 times higher than that of a reference untapered waveguide, allowing harmonics up to the 43rd to be realized at a modest incident intensity of ∼1011 W cm−2.

279 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: The basic concepts behind plasmonics-enabled light concentration and manipulation are discussed, an attempt to capture the wide range of activities and excitement in this area is made, and possible future directions are speculated on.
Abstract: The unprecedented ability of nanometallic (that is, plasmonic) structures to concentrate light into deep-subwavelength volumes has propelled their use in a vast array of nanophotonics technologies and research endeavours. Plasmonic light concentrators can elegantly interface diffraction-limited dielectric optical components with nanophotonic structures. Passive and active plasmonic devices provide new pathways to generate, guide, modulate and detect light with structures that are similar in size to state-of-the-art electronic devices. With the ability to produce highly confined optical fields, the conventional rules for light-matter interactions need to be re-examined, and researchers are venturing into new regimes of optical physics. In this review we will discuss the basic concepts behind plasmonics-enabled light concentration and manipulation, make an attempt to capture the wide range of activities and excitement in this area, and speculate on possible future directions.

3,953 citations

Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal ArticleDOI
TL;DR: Optical antennas are devices that convert freely propagating optical radiation into localized energy, and vice versa as mentioned in this paper, and hold promise for enhancing the performance and efficiency of photodetection, light emission and sensing.
Abstract: Optical antennas are devices that convert freely propagating optical radiation into localized energy, and vice versa. They enable the control and manipulation of optical fields at the nanometre scale, and hold promise for enhancing the performance and efficiency of photodetection, light emission and sensing. Although many of the properties and parameters of optical antennas are similar to their radiowave and microwave counterparts, they have important differences resulting from their small size and the resonant properties of metal nanostructures. This Review summarizes the physical properties of optical antennas, provides a summary of some of the most important recent developments in the field, discusses the potential applications and identifies the future challenges and opportunities.

2,557 citations

Journal ArticleDOI
TL;DR: In plasmonics, the metal nanostructures can serve as antennas to convert light into localized electric fields (E-fields) or as waveguides to route light to desired locations with nanometer precision through a strong interaction between incident light and free electrons in the nanostructure.
Abstract: Coinage metals, such as Au, Ag, and Cu, have been important materials throughout history.1 While in ancient cultures they were admired primarily for their ability to reflect light, their applications have become far more sophisticated with our increased understanding and control of the atomic world. Today, these metals are widely used in electronics, catalysis, and as structural materials, but when they are fashioned into structures with nanometer-sized dimensions, they also become enablers for a completely different set of applications that involve light. These new applications go far beyond merely reflecting light, and have renewed our interest in maneuvering the interactions between metals and light in a field known as plasmonics.2–6 In plasmonics, the metal nanostructures can serve as antennas to convert light into localized electric fields (E-fields) or as waveguides to route light to desired locations with nanometer precision. These applications are made possible through a strong interaction between incident light and free electrons in the nanostructures. With a tight control over the nanostructures in terms of size and shape, light can be effectively manipulated and controlled with unprecedented accuracy.3,7 While many new technologies stand to be realized from plasmonics, with notable examples including superlenses,8 invisible cloaks,9 and quantum computing,10,11 conventional technologies like microprocessors and photovoltaic devices could also be made significantly faster and more efficient with the integration of plasmonic nanostructures.12–15 Of the metals, Ag has probably played the most important role in the development of plasmonics, and its unique properties make it well-suited for most of the next-generation plasmonic technologies.16–18 1.1. What is Plasmonics? Plasmonics is related to the localization, guiding, and manipulation of electromagnetic waves beyond the diffraction limit and down to the nanometer length scale.4,6 The key component of plasmonics is a metal, because it supports surface plasmon polariton modes (indicated as surface plasmons or SPs throughout this review), which are electromagnetic waves coupled to the collective oscillations of free electrons in the metal. While there are a rich variety of plasmonic metal nanostructures, they can be differentiated based on the plasmonic modes they support: localized surface plasmons (LSPs) or propagating surface plasmons (PSPs).5,19 In LSPs, the time-varying electric field associated with the light (Eo) exerts a force on the gas of negatively charged electrons in the conduction band of the metal and drives them to oscillate collectively. At a certain excitation frequency (w), this oscillation will be in resonance with the incident light, resulting in a strong oscillation of the surface electrons, commonly known as a localized surface plasmon resonance (LSPR) mode.20 This phenomenon is illustrated in Figure 1A. Structures that support LSPRs experience a uniform Eo when excited by light as their dimensions are much smaller than the wavelength of the light. Figure 1 Schematic illustration of the two types of plasmonic nanostructures discussed in this article as excited by the electric field (Eo) of incident light with wavevector (k). In (A) the nanostructure is smaller than the wavelength of light and the free electrons ... In contrast, PSPs are supported by structures that have at least one dimension that approaches the excitation wavelength, as shown in Figure 1B.4 In this case, the Eo is not uniform across the structure and other effects must be considered. In such a structure, like a nanowire for example, SPs propagate back and forth between the ends of the structure. This can be described as a Fabry-Perot resonator with resonance condition l=nλsp, where l is the length of the nanowire, n is an integer, and λsp is the wavelength of the PSP mode.21,22 Reflection from the ends of the structure must also be considered, which can change the phase and resonant length. Propagation lengths can be in the tens of micrometers (for nanowires) and the PSP waves can be manipulated by controlling the geometrical parameters of the structure.23

2,421 citations