scispace - formally typeset
Search or ask a question
Author

Seungho Cho

Bio: Seungho Cho is an academic researcher from Ulsan National Institute of Science and Technology. The author has contributed to research in topics: Nanorod & Quantum dot. The author has an hindex of 26, co-authored 75 publications receiving 2642 citations. Previous affiliations of Seungho Cho include University of Cambridge & Pohang University of Science and Technology.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the growth of ZnO nano-and micro-structures was achieved by microwave irradiation with low power microwave-assisted heating (about 50 W) and subsequent aging process.
Abstract: Morphology-controlled growth of ZnO nano- and microstructures was achieved by microwave irradiation. Various basic ZnO structures, including nanorods, nanocandles, nanoneedles, nanodisks, nanonuts, microstars, microUFOs, and microballs were simply synthesized at a low temperature (90 °C) with low power microwave-assisted heating (about 50 W) and a subsequent aging process. These results could be obtained by changing the precursor chemicals, the capping agents, and the aging times. Even more complex ZnO structures, including ZnO bulky stars, cakes, and jellyfishes, were constructed by microwave irradiation to a mixture of the as-prepared basic ZnO structures and the solution I, IV, or V. This is a fast, simple, and reproducible method which does not require any template, catalyst, or surfactant but can control the morphology of ZnO crystals from simple to complex. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (X...

321 citations

Journal ArticleDOI
TL;DR: A facile and fast sonochemical route for the fabrication of a resistive-type ZnO gas sensor has been demonstrated in this article, where the average diameter and length of the nanorods were 50 and 500 nm, respectively.
Abstract: A facile and fast sonochemical route for the fabrication of a resistive-type ZnO gas sensor has been demonstrated. Vertically aligned ZnO nanorod arrays were grown on a Pt-electrode patterned alumina substrate under ambient conditions. The average diameter and length of the ZnO nanorods were 50 and 500 nm, respectively. Sonochemically grown ZnO nanorod gas sensor was highly sensitive to NO2 gas with a very low detection limit of 10 ppb at 250 °C; further, its response and recovery time were short. Considering the advantageous properties of this sonochemical technique, we believe that it can be used to fabricate high-performance gas sensors.

180 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis of carbon-doped zinc oxide nanostructures using vitamin C, and their visible light photocatalytic activity was reported, where the substitution of oxygen with carbon and the formation of Zn-C bonds were observed in the Cdoped ZnO structures.
Abstract: We report the synthesis of carbon-doped zinc oxide nanostructures using vitamin C, and their visible light photocatalytic activity. Amorphous/crystalline vitamin C–ZnO (VitC–ZnO) structures were obtained from a solution of zinc nitrate hexahydrate, HMT, and vitamin C through heating at 95 °C for 1 h. VitC–ZnO structures were calcined in air at 500 °C for 2 h to create C-doped ZnO nanostructures. Calcined structures were polycrystalline, with an average crystal domain size of 7 nm. EDS, XPS, and XRD analysis revealed the substitution of oxygen with carbon and the formation of Zn–C bonds in the C-doped ZnO nanostructures. The carbon concentrations, in the form of carbide, were controlled by varying the concentrations of vitamin C (more than 1 mM) added to reaction solutions. On the basis of these experimental results, we propose a possible formation mechanism for C-doped ZnO nanostructures. The C-doped ZnO nanostructures exhibited visible light absorption bands that were red-shifted relative to the UV exciton absorption of pure ZnO nanostructures. The visible light (λ ≥ 420 nm) photocatalytic activities of C-doped ZnO nanostructures were much better than the activities of pure ZnO nanostructures.

177 citations

Journal ArticleDOI
14 Jul 2011-Langmuir
TL;DR: The morphologies and exposed crystal faces of pure ZnO building blocks prior to surface modification had a significant effect on the visible light photocatalytic processes of ZnNO/ZnSe heterostructures after surface modification.
Abstract: We report a method for synthesizing three distinct type II 3D ZnO/ZnSe heterostructures through simple solution-based surface modification reactions in which polycrystalline ZnSe nanoparticles formed on the surfaces of single-crystalline ZnO building blocks of 3D superstructures. The experimental results suggested a possible formation mechanism for these heterostructures. The formation of the ZnO/ZnSe heterostructures was assumed to result from a dissolution–recrystallization mechanism. The optical properties of the 3D ZnO/ZnSe heterostructures were probed by UV–vis diffuse reflectance spectroscopy. The 3D ZnO/ZnSe heterostructures exhibited absorption in the visible spectral region. The visible photocatalytic activities of 3D ZnO/ZnSe heterostructures were much higher than those of the 3D pure ZnO structures. The activities of the 3D ZnO/ZnSe heterostructures varied according to the structures under visible light. The morphologies and exposed crystal faces of pure ZnO building blocks prior to surface mod...

156 citations

Journal ArticleDOI
11 Feb 2009-Langmuir
TL;DR: The growth mechanisms underlying the formation of the various ZnO structures in the absence and presence of citric acid or citrate additives are proposed.
Abstract: We have studied the precursor effects of citric acid and various citrates-including triethyl citrate, tripotassium citrate, trisodium citrate and triammonium citrate-on the formation of ZnO crystals in alkaline solution These citrate-related chemicals could be divided into three groups (group A, triethyl citrate; group B, tripotassium citrate and trisodium citrate; and group C, citric acid and triammonium citrate) based on their activity for modifying the ZnO growth direction and solution pH dependency on their concentration We could obtain ZnO structures with various distinct morphologies by simply changing the concentration of citric acid or citrate additive dissolved in the alkaline reaction solution On the basis of the results, we propose the growth mechanisms underlying the formation of the various ZnO structures in the absence and presence of citric acid or citrate additives

150 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a critical review highlights some key factors influencing the efficiency of heterogeneous semiconductors for solar water splitting (i.e. improved charge separation and transfer, promoted optical absorption, optimized band gap position, lowered cost and toxicity, and enhanced stability and water splitting kinetics).
Abstract: There is a growing interest in the conversion of water and solar energy into clean and renewable H2 fuels using earth-abundant materials due to the depletion of fossil fuel and its serious environmental impact. This critical review highlights some key factors influencing the efficiency of heterogeneous semiconductors for solar water splitting (i.e. improved charge separation and transfer, promoted optical absorption, optimized band gap position, lowered cost and toxicity, and enhanced stability and water splitting kinetics). Moreover, different engineering strategies, such as band structure engineering, micro/nano engineering, bionic engineering, co-catalyst engineering, surface/interface engineering of heterogeneous semiconductors are summarized and discussed thoroughly. The synergistic effects of the different engineering strategies, especially for the combination of co-catalyst loading and other strategies seem to be more promising for the development of highly efficient photocatalysts. A thorough understanding of electron and hole transfer thermodynamics and kinetics at the fundamental level is also important for elucidating the key efficiency-limiting step and designing highly efficient solar-to-fuel conversion systems. In this review, we provide not only a summary of the recent progress in the different engineering strategies of heterogeneous semiconductors for solar water splitting, but also some potential opportunities for designing and optimizing solar cells, photocatalysts for the reduction of CO2 and pollutant degradation, and electrocatalysts for water splitting.

1,489 citations

Journal ArticleDOI
TL;DR: Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures.
Abstract: and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures Vasilios Georgakilas,† Jason A. Perman,‡ Jiri Tucek,‡ and Radek Zboril*,‡ †Material Science Department, University of Patras, 26504 Rio Patras, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic

1,366 citations

Journal ArticleDOI
TL;DR: Various cocatalysts, such as the biomimetic, metal-based,Metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area.
Abstract: Photoreduction of CO2 into sustainable and green solar fuels is generally believed to be an appealing solution to simultaneously overcome both environmental problems and energy crisis. The low selectivity of challenging multi-electron CO2 photoreduction reactions makes it one of the holy grails in heterogeneous photocatalysis. This Review highlights the important roles of cocatalysts in selective photocatalytic CO2 reduction into solar fuels using semiconductor catalysts. A special emphasis in this review is placed on the key role, design considerations and modification strategies of cocatalysts for CO2 photoreduction. Various cocatalysts, such as the biomimetic, metal-based, metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area. This Review provides useful information for the design of highly selective cocatalysts for photo(electro)reduction and electroreduction of CO2 and complements the existing reviews on various semiconductor photocatalysts.

1,365 citations

Journal ArticleDOI
TL;DR: In this article, a review describes recent advances in the fundamental understanding of CO2 photoreduction on the surface of heterogeneous catalysts and particularly provides an overview of enhancing the adsorption/activation of CO 2 molecules.
Abstract: Large amounts of anthropogenic CO2 emissions associated with increased fossil fuel consumption have led to global warming and an energy crisis. The photocatalytic reduction of CO2 into solar fuels such as methane or methanol is believed to be one of the best methods to address these two problems. In addition to light harvesting and charge separation, the adsorption/activation and reduction of CO2 on the surface of heterogeneous catalysts remain a scientifically critical challenge, which greatly limits the overall photoconversion efficiency and selectivity of CO2 reduction. This review describes recent advances in the fundamental understanding of CO2 photoreduction on the surface of heterogeneous catalysts and particularly provides an overview of enhancing the adsorption/activation of CO2 molecules. The reaction mechanism and pathways of CO2 reduction as well as their dependent factors are also analyzed and discussed, which is expected to enable an increase in the overall efficiency of CO2 reduction through minimizing the reaction barriers and controlling the selectivity towards the desired products. The challenges and perspectives of CO2 photoreduction over heterogeneous catalysts are presented as well.

1,315 citations

Journal ArticleDOI
TL;DR: Photocatalysts and Photoelectrodes James L. White,† Maor F. Pander III,† Yuan Hu,† Ivy C. Fortmeyer,† James Eujin Park,† Tao Zhang,† Kuo Liao,† Jing Gu,‡ Yong Yan, ‡ Travis W. Shaw,† and Esta Abelev.
Abstract: Photocatalysts and Photoelectrodes James L. White,† Maor F. Baruch,† James E. Pander III,† Yuan Hu,† Ivy C. Fortmeyer,† James Eujin Park,† Tao Zhang,† Kuo Liao,† Jing Gu,‡ Yong Yan,‡ Travis W. Shaw,† Esta Abelev,† and Andrew B. Bocarsly*,† †Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States ‡Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States

1,281 citations