scispace - formally typeset
Search or ask a question
Author

Seunghyup Yoo

Bio: Seunghyup Yoo is an academic researcher from KAIST. The author has contributed to research in topics: OLED & Organic solar cell. The author has an hindex of 49, co-authored 258 publications receiving 10521 citations. Previous affiliations of Seunghyup Yoo include Georgia Institute of Technology & Seoul National University.


Papers
More filters
Journal ArticleDOI
04 Dec 2015-Science
TL;DR: Efficient organic-inorganic perovskite light-emitting diodes were made with nanograin crystals that lack metallic lead, which helped to confine excitons and avoid their quenching.
Abstract: Organic-inorganic hybrid perovskites are emerging low-cost emitters with very high color purity, but their low luminescent efficiency is a critical drawback. We boosted the current efficiency (CE) of perovskite light-emitting diodes with a simple bilayer structure to 42.9 candela per ampere, similar to the CE of phosphorescent organic light-emitting diodes, with two modifications: We prevented the formation of metallic lead (Pb) atoms that cause strong exciton quenching through a small increase in methylammonium bromide (MABr) molar proportion, and we spatially confined the exciton in uniform MAPbBr3 nanograins (average diameter = 99.7 nanometers) formed by a nanocrystal pinning process and concomitant reduction of exciton diffusion length to 67 nanometers. These changes caused substantial increases in steady-state photoluminescence intensity and efficiency of MAPbBr3 nanograin layers.

2,295 citations

Journal ArticleDOI
TL;DR: In this article, an efficient organic photovoltaic cell based on a heterojunction of pentacene and C60 was fabricated, which exhibited broad light-harvesting throughout the visible spectrum with a peak external quantum efficiency (EQE) of 58±4% at short-circuit condition.
Abstract: We have fabricated an efficient organic photovoltaic cell based on a heterojunction of pentacene and C60. Photocurrent action spectra exhibit broad light-harvesting throughout the visible spectrum with a peak external quantum efficiency (EQE) of 58±4% at short-circuit condition. Modeling studies indicate that this high EQE can be partly attributed to the large exciton diffusion length in the pentacene film as well as efficient dissociation of excitons at the pentacene/C60 heterojunction.

513 citations

Journal ArticleDOI
TL;DR: In this paper, a one-dopant alloying strategy was proposed to generate smaller, monodisperse colloidal particles (confining electrons and holes, and boosting radiative recombination) with fewer surface defects.
Abstract: Electroluminescence efficiencies of metal halide perovskite nanocrystals (PNCs) are limited by a lack of material strategies that can both suppress the formation of defects and enhance the charge carrier confinement. Here we report a one-dopant alloying strategy that generates smaller, monodisperse colloidal particles (confining electrons and holes, and boosting radiative recombination) with fewer surface defects (reducing non-radiative recombination). Doping of guanidinium into formamidinium lead bromide PNCs yields limited bulk solubility while creating an entropy-stabilized phase in the PNCs and leading to smaller PNCs with more carrier confinement. The extra guanidinium segregates to the surface and stabilizes the undercoordinated sites. Furthermore, a surface-stabilizing 1,3,5-tris(bromomethyl)-2,4,6-triethylbenzene was applied as a bromide vacancy healing agent. The result is highly efficient PNC-based light-emitting diodes that have current efficiency of 108 cd A−1 (external quantum efficiency of 23.4%), which rises to 205 cd A−1 (external quantum efficiency of 45.5%) with a hemispherical lens. Guanidinium doping is shown to enhance the operation of perovskite nanocrystal light-emitting diodes.

450 citations

Journal ArticleDOI
TL;DR: In this paper, a facile route to fabricate a built-in haze glass-fabric reinforced siloxane hybrid (GFRH) film having high total transmittance and high haze was reported using the scattering effect induced by refractive index contrast between the glass fabric and the hybrimer.
Abstract: Substrates with high transmittance and high haze are desired for increasing the light outcoupling efficiency of organic light-emitting diodes (OLEDs). However, most of the polymer films used as substrate have high transmittance and low haze. Herein, a facile route to fabricate a built-in haze glass-fabric reinforced siloxane hybrid (GFRH) film having high total transmittance (≈89%) and high haze (≈89%) is reported using the scattering effect induced by refractive index contrast between the glass fabric and the siloxane hybrid (hybrimer). The hybrimer exhibiting large refractive index contrast with the glass fabric is synthesized by removing the phenyl substituents. Besides its optical properties, the hazy GFRH films exhibit smooth surface (Rsq = 0.2 nm), low thermal expansion (13 ppm °C−1), high chemical stability, and dimensional stability. Owing to the outstanding properties of the GFRH film, OLED is successfully fabricated onto the film exhibiting 74% external quantum efficiency enhancement. The hazy GFRH's unique optical properties, excellent thermal stability, outstanding dimensional stability, and the ability to perform as a transparent electrode enable them as a wide ranging substrate for the flexible optoelectronic devices.

398 citations

Journal ArticleDOI
TL;DR: This Review describes emerging multifunctional materials critical to the advent of next-generation implantable and wearable photonic healthcare devices and discusses the path for their clinical translation, along with the future research directions for the field, particularly regarding mobile healthcare and personalized medicine.
Abstract: Numerous light-based diagnostic and therapeutic devices are routinely used in the clinic. These devices have a familiar look as items plugged in the wall or placed at patients' bedsides, but recently, many new ideas have been proposed for the realization of implantable or wearable functional devices. Many advances are being fuelled by the development of multifunctional materials for photonic healthcare devices. However, the finite depth of light penetration in the body is still a serious constraint for their clinical applications. In this Review, we discuss the basic concepts and some examples of state-of-the-art implantable and wearable photonic healthcare devices for diagnostic and therapeutic applications. First, we describe emerging multifunctional materials critical to the advent of next-generation implantable and wearable photonic healthcare devices and discuss the path for their clinical translation. Then, we examine implantable photonic healthcare devices in terms of their properties and diagnostic and therapeutic functions. We next describe exemplary cases of noninvasive, wearable photonic healthcare devices across different anatomical applications. Finally, we discuss the future research directions for the field, in particular regarding mobile healthcare and personalized medicine.

326 citations


Cited by
More filters
Journal ArticleDOI

4,756 citations

Journal ArticleDOI
01 Feb 2013-Science
TL;DR: Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.
Abstract: Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.

4,596 citations

Journal ArticleDOI
TL;DR: Electronic Coupling in Oligoacene Derivatives: Factors Influencing Charge Mobility, and the Energy-Splitting-in-Dimer Method 3.1.
Abstract: 2.2. Materials 929 2.3. Factors Influencing Charge Mobility 931 2.3.1. Molecular Packing 931 2.3.2. Disorder 932 2.3.3. Temperature 933 2.3.4. Electric Field 934 2.3.5. Impurities 934 2.3.6. Pressure 934 2.3.7. Charge-Carrier Density 934 2.3.8. Size/molecular Weight 935 3. The Charge-Transport Parameters 935 3.1. Electronic Coupling 936 3.1.1. The Energy-Splitting-in-Dimer Method 936 3.1.2. The Orthogonality Issue 937 3.1.3. Impact of the Site Energy 937 3.1.4. Electronic Coupling in Oligoacene Derivatives 938

3,635 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
14 Oct 2016-Science
TL;DR: This work shows that the small and oxidation-stable rubidium cation (Rb+) can be embedded into a “cation cascade” to create perovskite materials with excellent material properties and achieved stabilized efficiencies of up to 21.6% on small areas.
Abstract: All of the cations currently used in perovskite solar cells abide by the tolerance factor for incorporation into the lattice. We show that the small and oxidation-stable rubidium cation (Rb + ) can be embedded into a “cation cascade” to create perovskite materials with excellent material properties. We achieved stabilized efficiencies of up to 21.6% (average value, 20.2%) on small areas (and a stabilized 19.0% on a cell 0.5 square centimeters in area) as well as an electroluminescence of 3.8%. The open-circuit voltage of 1.24 volts at a band gap of 1.63 electron volts leads to a loss in potential of 0.39 volts, versus 0.4 volts for commercial silicon cells. Polymer-coated cells maintained 95% of their initial performance at 85°C for 500 hours under full illumination and maximum power point tracking.

3,034 citations