scispace - formally typeset
Search or ask a question
Author

Sevinc Bayram

Bio: Sevinc Bayram is an academic researcher from Hitachi. The author has contributed to research in topics: Digital image & Demosaicing. The author has an hindex of 20, co-authored 33 publications receiving 2040 citations. Previous affiliations of Sevinc Bayram include Uludağ University & New York University.

Papers
More filters
Proceedings ArticleDOI
19 Apr 2009
TL;DR: The proposed features can detect duplicated region in the images very accurately, even when the copied region was undergone severe image manipulations and use of counting bloom filters offers a considerable improvement in time efficiency at the expense of a slight reduction in the robustness.
Abstract: Copy-move forgery is a specific type of image tampering, where a part of the image is copied and pasted on another part of the same image. In this paper, we propose a new approach for detecting copy-move forgery in digital images, which is considerably more robust to lossy compression, scaling and rotation type of manipulations. Also, to improve the computational complexity in detecting the duplicated image regions, we propose to use the notion of counting bloom filters as an alternative to lexicographic sorting, which is a common component of most of the proposed copy-move forgery detection schemes. Our experimental results show that the proposed features can detect duplicated region in the images very accurately, even when the copied region was undergone severe image manipulations. In addition, it is observed that use of counting bloom filters offers a considerable improvement in time efficiency at the expense of a slight reduction in the robustness.

493 citations

Proceedings ArticleDOI
11 Sep 2005
TL;DR: This work proposes to identify the source camera of an image based on traces of the proprietary interpolation algorithm deployed by a digital camera using a set of image characteristics defined and then used in conjunction with a support vector machine based multi-class classifier to determine the originating digital camera.
Abstract: In this work, we focus our interest on blind source camera identification problem by extending our results in the direction of M. Kharrazi et al. (2004). The interpolation in the color surface of an image due to the use of a color filter array (CFA) forms the basis of the paper. We propose to identify the source camera of an image based on traces of the proprietary interpolation algorithm deployed by a digital camera. For this purpose, a set of image characteristics are defined and then used in conjunction with a support vector machine based multi-class classifier to determine the originating digital camera. We also provide initial results on identifying source among two and three digital cameras.

311 citations

Journal ArticleDOI
TL;DR: The performance of classifiers with respect to selected controlled manipulations as well as to uncontrolled manipulations is analyzed and the tools for image manipulation detection are treated under feature fusion and decision fusion scenarios.
Abstract: Techniques and methodologies for validating the authenticity of digital images and testing for the presence of doctoring and manipulation operations on them has recently attracted attention. We review three categories of forensic features and discuss the design of classifiers between doctored and original images. The performance of classifiers with respect to selected controlled manipulations as well as to uncontrolled manipulations is analyzed. The tools for image manipulation detection are treated under feature fusion and decision fusion scenarios.

209 citations

Patent
05 Jan 2010
TL;DR: In this article, finger touch information from a user is accepted via a touch sensitive element, the finger touch features include at least a time series of finger touch samples that define a trace of the user's signature, and each of the features including centroid coordinates and non-centroid information.
Abstract: For user authentication, finger touch information from a user is accepted via a touch sensitive element, the finger touch information including at least a time series of finger touch samples that define a trace of the user's signature, and each of the finger touch samples including centroid coordinates and non-centroid information, the non-centroid information including at least one of (A) a shape of the finger touch sample, (B) a size of the finger touch sample, (C) an orientation of the finger touch sample, and (D) characteristics of a multi-touch finger touch sample. A similarity of such finger touch samples with previously entered and stored finger touch samples is determined and compared with a threshold for purposes of user authentication.

181 citations

Proceedings ArticleDOI
24 Oct 2004
TL;DR: A novel way of measuring the distortion between two images, one being the original and the other processed, is proposed, which helps to tell if some part of an image has undergone a particular or a combination of processing methods.
Abstract: In this paper we present a framework for digital image forensics. Based on the assumptions that some processing operations must be done on the image before it is doctored and an expected measurable distortion after processing an image, we design classifiers that discriminates between original and processed images. We propose a novel way of measuring the distortion between two images, one being the original and the other processed. The measurements are used as features in classifier design. Using these classifiers we test whether a suspicious part of a given image has been processed with a particular method or not. Experimental results show that with a high accuracy we are able to tell if some part of an image has undergone a particular or a combination of processing methods.

113 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The problem of detecting if an image has been forged is investigated; in particular, attention has been paid to the case in which an area of an image is copied and then pasted onto another zone to create a duplication or to cancel something that was awkward.
Abstract: One of the principal problems in image forensics is determining if a particular image is authentic or not. This can be a crucial task when images are used as basic evidence to influence judgment like, for example, in a court of law. To carry out such forensic analysis, various technological instruments have been developed in the literature. In this paper, the problem of detecting if an image has been forged is investigated; in particular, attention has been paid to the case in which an area of an image is copied and then pasted onto another zone to create a duplication or to cancel something that was awkward. Generally, to adapt the image patch to the new context a geometric transformation is needed. To detect such modifications, a novel methodology based on scale invariant features transform (SIFT) is proposed. Such a method allows us to both understand if a copy-move attack has occurred and, furthermore, to recover the geometric transformation used to perform cloning. Extensive experimental results are presented to confirm that the technique is able to precisely individuate the altered area and, in addition, to estimate the geometric transformation parameters with high reliability. The method also deals with multiple cloning.

868 citations

Journal ArticleDOI
TL;DR: A unified framework for identifying the source digital camera from its images and for revealing digitally altered images using photo-response nonuniformity noise (PRNU), which is a unique stochastic fingerprint of imaging sensors is provided.
Abstract: In this paper, we provide a unified framework for identifying the source digital camera from its images and for revealing digitally altered images using photo-response nonuniformity noise (PRNU), which is a unique stochastic fingerprint of imaging sensors. The PRNU is obtained using a maximum-likelihood estimator derived from a simplified model of the sensor output. Both digital forensics tasks are then achieved by detecting the presence of sensor PRNU in specific regions of the image under investigation. The detection is formulated as a hypothesis testing problem. The statistical distribution of the optimal test statistics is obtained using a predictor of the test statistics on small image blocks. The predictor enables more accurate and meaningful estimation of probabilities of false rejection of a correct camera and missed detection of a tampered region. We also include a benchmark implementation of this framework and detailed experimental validation. The robustness of the proposed forensic methods is tested on common image processing, such as JPEG compression, gamma correction, resizing, and denoising.

850 citations

Journal ArticleDOI
Hany Farid1
TL;DR: The field of digital forensics has emerged to help restore some trust to digital images and the author reviews the state of the art in this new and exciting field.
Abstract: We are undoubtedly living in an age where we are exposed to a remarkable array of visual imagery. While we may have historically had confidence in the integrity of this imagery, today's digital technology has begun to erode this trust. From the tabloid magazines to the fashion industry and in mainstream media outlets, scientific journals, political campaigns, courtrooms, and the photo hoaxes that land in our e-mail in-boxes, doctored photographs are appearing with a growing frequency and sophistication. Over the past five years, the field of digital forensics has emerged to help restore some trust to digital images. The author reviews the state of the art in this new and exciting field.

825 citations

Journal ArticleDOI
TL;DR: The main difference to the traditional methods is that the proposed scheme first segments the test image into semantically independent patches prior to keypoint extraction, and the copy-move regions can be detected by matching between these patches.
Abstract: In this paper, we propose a scheme to detect the copy-move forgery in an image, mainly by extracting the keypoints for comparison. The main difference to the traditional methods is that the proposed scheme first segments the test image into semantically independent patches prior to keypoint extraction. As a result, the copy-move regions can be detected by matching between these patches. The matching process consists of two stages. In the first stage, we find the suspicious pairs of patches that may contain copy-move forgery regions, and we roughly estimate an affine transform matrix. In the second stage, an Expectation-Maximization-based algorithm is designed to refine the estimated matrix and to confirm the existence of copy-move forgery. Experimental results prove the good performance of the proposed scheme via comparing it with the state-of-the-art schemes on the public databases.

780 citations

Journal ArticleDOI
TL;DR: This paper created a challenging real-world copy-move dataset, and a software framework for systematic image manipulation, and examined the 15 most prominent feature sets, finding the keypoint-based features Sift and Surf as well as the block-based DCT, DWT, KPCA, PCA, and Zernike features perform very well.
Abstract: A copy-move forgery is created by copying and pasting content within the same image, and potentially postprocessing it. In recent years, the detection of copy-move forgeries has become one of the most actively researched topics in blind image forensics. A considerable number of different algorithms have been proposed focusing on different types of postprocessed copies. In this paper, we aim to answer which copy-move forgery detection algorithms and processing steps (e.g., matching, filtering, outlier detection, affine transformation estimation) perform best in various postprocessing scenarios. The focus of our analysis is to evaluate the performance of previously proposed feature sets. We achieve this by casting existing algorithms in a common pipeline. In this paper, we examined the 15 most prominent feature sets. We analyzed the detection performance on a per-image basis and on a per-pixel basis. We created a challenging real-world copy-move dataset, and a software framework for systematic image manipulation. Experiments show, that the keypoint-based features Sift and Surf, as well as the block-based DCT, DWT, KPCA, PCA, and Zernike features perform very well. These feature sets exhibit the best robustness against various noise sources and downsampling, while reliably identifying the copied regions.

623 citations