scispace - formally typeset
Search or ask a question
Author

Sewall Wright

Bio: Sewall Wright is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Population & Inbreeding. The author has an hindex of 70, co-authored 161 publications receiving 52186 citations. Previous affiliations of Sewall Wright include Bureau of Animal Industry & University of Chicago.


Papers
More filters
Journal ArticleDOI
01 Mar 1931-Genetics
TL;DR: Page 108, last line of text, for "P/P″" read "P′/ P″."
Abstract: Page 108, last line of text, for "P/P″" read "P′/P″." Page 120, last line, for "δ v " read "δ y ." Page 123, line 10, for "4Nn" read "4Nu." Page 125, line 1, for "q" read "q." Page 126, line 12, for "q" read "q." Page 135, line 5 from bottom, for "y4Nsq" read "e4Nsq." Page 141, lines 8

7,850 citations

Journal ArticleDOI
29 Mar 1943-Genetics

5,446 citations

Journal ArticleDOI
TL;DR: The frequency of a given gene in a population may be modified by a number of conditions including recurrent mutation to and from it, migration, selection of various sorts and, far from least in importance, were chance variation.

4,833 citations

Journal ArticleDOI
TL;DR: It was found that there is no equilibrium in either case short of complete fixation locally, in spite of the linear increase in number of different ancestors with increasing number of ancestral generations, in contrast to systems (half first cousin or second cousin) in which this increase is more than linear and a steady state is rapidly attained with respect to heterozygosis.
Abstract: Kimura and Crow (1963b) have recently made an interesting comparison between two classes of systems of mating within populations of constant size: ones in which there is maximum avoidance of consanguine mating and ones in which all matings are between close relatives around an unbroken circle. These are illustrated in Figs. 1 and 2 in populations of eight. The rate of decrease of heterozygosis in the former class had, as they note, been found long before to approach 1/(4N) asymptotically with increasing size of population, N (Wright, 1921, 1933a). Two cases with patterns of mating similar to those of Kimura and Crow's second class, except that the matings were between neighbors along infinitely extended lines instead of around a circle, had also been considered in these papers. These systems consisted of exclusive mating of half-sibs or of first cousins, otherwise with a minimum of relationship. It was found that there is no equilibrium in either case short of complete fixation locally, in spite of the linear increase in number of different ancestors with increasing number of ancestral generations. This was in contrast to systems (half first cousin or second cousin) in which this increase is more than linear and a steady state is rapidly attained with respect to heterozygosis. Kimura and Crow were surprised to find that the limiting rates of decrease of heterozygosis in their circular systems are much less than under maximum avoidance approaching [v/(2N + 4)]2 in the case of half-sib matings and [7/ (N + 12)]2 under first-cousin matings with large N. Maxi-

3,305 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is found that in most cases the estimated ‘log probability of data’ does not provide a correct estimation of the number of clusters, K, and using an ad hoc statistic ΔK based on the rate of change in the log probability between successive K values, structure accurately detects the uppermost hierarchical level of structure for the scenarios the authors tested.
Abstract: The identification of genetically homogeneous groups of individuals is a long standing issue in population genetics. A recent Bayesian algorithm implemented in the software STRUCTURE allows the identification of such groups. However, the ability of this algorithm to detect the true number of clusters (K) in a sample of individuals when patterns of dispersal among populations are not homogeneous has not been tested. The goal of this study is to carry out such tests, using various dispersal scenarios from data generated with an individual-based model. We found that in most cases the estimated 'log probability of data' does not provide a correct estimation of the number of clusters, K. However, using an ad hoc statistic DeltaK based on the rate of change in the log probability of data between successive K values, we found that STRUCTURE accurately detects the uppermost hierarchical level of structure for the scenarios we tested. As might be expected, the results are sensitive to the type of genetic marker used (AFLP vs. microsatellite), the number of loci scored, the number of populations sampled, and the number of individuals typed in each sample.

18,572 citations

Journal ArticleDOI
TL;DR: The purpose of this discussion is to offer some unity to various estimation formulae and to point out that correlations of genes in structured populations, with which F-statistics are concerned, are expressed very conveniently with a set of parameters treated by Cockerham (1 969, 1973).
Abstract: This journal frequently contains papers that report values of F-statistics estimated from genetic data collected from several populations. These parameters, FST, FIT, and FIS, were introduced by Wright (1951), and offer a convenient means of summarizing population structure. While there is some disagreement about the interpretation of the quantities, there is considerably more disagreement on the method of evaluating them. Different authors make different assumptions about sample sizes or numbers of populations and handle the difficulties of multiple alleles and unequal sample sizes in different ways. Wright himself, for example, did not consider the effects of finite sample size. The purpose of this discussion is to offer some unity to various estimation formulae and to point out that correlations of genes in structured populations, with which F-statistics are concerned, are expressed very conveniently with a set of parameters treated by Cockerham (1 969, 1973). We start with the parameters and construct appropriate estimators for them, rather than beginning the discussion with various data functions. The extension of Cockerham's work to multiple alleles and loci will be made explicit, and the use of jackknife procedures for estimating variances will be advocated. All of this may be regarded as an extension of a recent treatment of estimating the coancestry coefficient to serve as a mea-

17,890 citations

Book
01 Jan 1988
TL;DR: Probabilistic Reasoning in Intelligent Systems as mentioned in this paper is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty, and provides a coherent explication of probability as a language for reasoning with partial belief.
Abstract: From the Publisher: Probabilistic Reasoning in Intelligent Systems is a complete andaccessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty—and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition—in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

15,671 citations

Journal ArticleDOI
TL;DR: Arlequin ver 3.0 as discussed by the authors is a software package integrating several basic and advanced methods for population genetics data analysis, like the computation of standard genetic diversity indices, the estimation of allele and haplotype frequencies, tests of departure from linkage equilibrium, departure from selective neutrality and demographic equilibrium, estimation or parameters from past population expansions, and thorough analyses of population subdivision under the AMOVA framework.
Abstract: Arlequin ver 3.0 is a software package integrating several basic and advanced methods for population genetics data analysis, like the computation of standard genetic diversity indices, the estimation of allele and haplotype frequencies, tests of departure from linkage equilibrium, departure from selective neutrality and demographic equilibrium, estimation or parameters from past population expansions, and thorough analyses of population subdivision under the AMOVA framework. Arlequin 3 introduces a completely new graphical interface written in C++, a more robust semantic analysis of input files, and two new methods: a Bayesian estimation of gametic phase from multi-locus genotypes, and an estimation of the parameters of an instantaneous spatial expansion from DNA sequence polymorphism. Arlequin can handle several data types like DNA sequences, microsatellite data, or standard multi-locus genotypes. A Windows version of the software is freely available on http://cmpg.unibe.ch/software/arlequin3.

14,271 citations

Journal ArticleDOI
01 Jun 1992-Genetics
TL;DR: In this article, a framework for the study of molecular variation within a single species is presented, where information on DNA haplotype divergence is incorporated into an analysis of variance format, derived from a matrix of squared-distances among all pairs of haplotypes.
Abstract: We present here a framework for the study of molecular variation within a single species. Information on DNA haplotype divergence is incorporated into an analysis of variance format, derived from a matrix of squared-distances among all pairs of haplotypes. This analysis of molecular variance (AMOVA) produces estimates of variance components and F-statistic analogs, designated here as phi-statistics, reflecting the correlation of haplotypic diversity at different levels of hierarchical subdivision. The method is flexible enough to accommodate several alternative input matrices, corresponding to different types of molecular data, as well as different types of evolutionary assumptions, without modifying the basic structure of the analysis. The significance of the variance components and phi-statistics is tested using a permutational approach, eliminating the normality assumption that is conventional for analysis of variance but inappropriate for molecular data. Application of AMOVA to human mitochondrial DNA haplotype data shows that population subdivisions are better resolved when some measure of molecular differences among haplotypes is introduced into the analysis. At the intraspecific level, however, the additional information provided by knowing the exact phylogenetic relations among haplotypes or by a nonlinear translation of restriction-site change into nucleotide diversity does not significantly modify the inferred population genetic structure. Monte Carlo studies show that site sampling does not fundamentally affect the significance of the molecular variance components. The AMOVA treatment is easily extended in several different directions and it constitutes a coherent and flexible framework for the statistical analysis of molecular data.

12,835 citations