scispace - formally typeset
Search or ask a question
Author

Seyed Mehran Kazemi

Other affiliations: Google
Bio: Seyed Mehran Kazemi is an academic researcher from University of British Columbia. The author has contributed to research in topics: Probabilistic logic & Inference. The author has an hindex of 14, co-authored 35 publications receiving 894 citations. Previous affiliations of Seyed Mehran Kazemi include Google.

Papers
More filters
Proceedings Article
03 Dec 2018
TL;DR: It is proved SimplE is fully expressive and derive a bound on the size of its embeddings for full expressivity and shown empirically that, despite its simplicity, SimplE outperforms several state-of-the-art tensor factorization techniques.
Abstract: Knowledge graphs contain knowledge about the world and provide a structured representation of this knowledge. Current knowledge graphs contain only a small subset of what is true in the world. Link prediction approaches aim at predicting new links for a knowledge graph given the existing links among the entities. Tensor factorization approaches have proved promising for such link prediction problems. Proposed in 1927, Canonical Polyadic (CP) decomposition is among the first tensor factorization approaches. CP generally performs poorly for link prediction as it learns two independent embedding vectors for each entity, whereas they are really tied. We present a simple enhancement of CP (which we call SimplE) to allow the two embeddings of each entity to be learned dependently. The complexity of SimplE grows linearly with the size of embeddings. The embeddings learned through SimplE are interpretable, and certain types of background knowledge can be incorporated into these embeddings through weight tying. We prove SimplE is fully expressive and derive a bound on the size of its embeddings for full expressivity. We show empirically that, despite its simplicity, SimplE outperforms several state-of-the-art tensor factorization techniques. SimplE's code is available on GitHub at https://github.com/Mehran-k/SimplE.

454 citations

Journal Article
TL;DR: This survey describes existing models from an encoder-decoder perspective, categorize these encoders and decoders based on the techniques they employ, and analyzes the approaches in each category.
Abstract: Graphs arise naturally in many real-world applications including social networks, recommender systems, ontologies, biology, and computational finance. Traditionally, machine learning models for graphs have been mostly designed for static graphs. However, many applications involve evolving graphs. This introduces important challenges for learning and inference since nodes, attributes, and edges change over time. In this survey, we review the recent advances in representation learning for dynamic graphs, including dynamic knowledge graphs. We describe existing models from an encoder-decoder perspective, categorize these encoders and decoders based on the techniques they employ, and analyze the approaches in each category. We also review several prominent applications and widely used datasets and highlight directions for future research.

203 citations

Journal ArticleDOI
03 Apr 2020
TL;DR: Novel models for temporal KG completion are built through equipping static models with a diachronic entity embedding function which provides the characteristics of entities at any point in time where only static entity features are provided.
Abstract: Knowledge graphs (KGs) typically contain temporal facts indicating relationships among entities at different times. Due to their incompleteness, several approaches have been proposed to infer new facts for a KG based on the existing ones–a problem known as KG completion. KG embedding approaches have proved effective for KG completion, however, they have been developed mostly for static KGs. Developing temporal KG embedding models is an increasingly important problem. In this paper, we build novel models for temporal KG completion through equipping static models with a diachronic entity embedding function which provides the characteristics of entities at any point in time. This is in contrast to the existing temporal KG embedding approaches where only static entity features are provided. The proposed embedding function is model-agnostic and can be potentially combined with any static model. We prove that combining it with SimplE, a recent model for static KG embedding, results in a fully expressive model for temporal KG completion. Our experiments indicate the superiority of our proposal compared to existing baselines.

202 citations

Posted Content
TL;DR: This paper provides a model-agnostic vector representation for time, called Time2Vec, that can be easily imported into many existing and future architectures and improve their performances.
Abstract: Time is an important feature in many applications involving events that occur synchronously and/or asynchronously. To effectively consume time information, recent studies have focused on designing new architectures. In this paper, we take an orthogonal but complementary approach by providing a model-agnostic vector representation for time, called Time2Vec, that can be easily imported into many existing and future architectures and improve their performances. We show on a range of models and problems that replacing the notion of time with its Time2Vec representation improves the performance of the final model.

147 citations

Posted Content
TL;DR: SimplE as mentioned in this paper is an extension of the Canonical polyadic decomposition to allow the two embeddings of each entity to be learned dependently, and the complexity of SimplE grows linearly with the size of embedding.
Abstract: Knowledge graphs contain knowledge about the world and provide a structured representation of this knowledge. Current knowledge graphs contain only a small subset of what is true in the world. Link prediction approaches aim at predicting new links for a knowledge graph given the existing links among the entities. Tensor factorization approaches have proved promising for such link prediction problems. Proposed in 1927, Canonical Polyadic (CP) decomposition is among the first tensor factorization approaches. CP generally performs poorly for link prediction as it learns two independent embedding vectors for each entity, whereas they are really tied. We present a simple enhancement of CP (which we call SimplE) to allow the two embeddings of each entity to be learned dependently. The complexity of SimplE grows linearly with the size of embeddings. The embeddings learned through SimplE are interpretable, and certain types of background knowledge can be incorporated into these embeddings through weight tying. We prove SimplE is fully expressive and derive a bound on the size of its embeddings for full expressivity. We show empirically that, despite its simplicity, SimplE outperforms several state-of-the-art tensor factorization techniques. SimplE's code is available on GitHub at this https URL.

91 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Book ChapterDOI
31 Jan 1963

2,885 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the knowledge graph covering overall research topics about: 1) knowledge graph representation learning; 2) knowledge acquisition and completion; 3) temporal knowledge graph; and 4) knowledge-aware applications and summarize recent breakthroughs and perspective directions to facilitate future research.
Abstract: Human knowledge provides a formal understanding of the world. Knowledge graphs that represent structural relations between entities have become an increasingly popular research direction toward cognition and human-level intelligence. In this survey, we provide a comprehensive review of the knowledge graph covering overall research topics about: 1) knowledge graph representation learning; 2) knowledge acquisition and completion; 3) temporal knowledge graph; and 4) knowledge-aware applications and summarize recent breakthroughs and perspective directions to facilitate future research. We propose a full-view categorization and new taxonomies on these topics. Knowledge graph embedding is organized from four aspects of representation space, scoring function, encoding models, and auxiliary information. For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning are reviewed. We further explore several emerging topics, including metarelational learning, commonsense reasoning, and temporal knowledge graphs. To facilitate future research on knowledge graphs, we also provide a curated collection of data sets and open-source libraries on different tasks. In the end, we have a thorough outlook on several promising research directions.

1,025 citations

Posted Content
TL;DR: An approach for selecting problem-specific Fourier features that greatly improves the performance of MLPs for low-dimensional regression tasks relevant to the computer vision and graphics communities is suggested.
Abstract: We show that passing input points through a simple Fourier feature mapping enables a multilayer perceptron (MLP) to learn high-frequency functions in low-dimensional problem domains These results shed light on recent advances in computer vision and graphics that achieve state-of-the-art results by using MLPs to represent complex 3D objects and scenes Using tools from the neural tangent kernel (NTK) literature, we show that a standard MLP fails to learn high frequencies both in theory and in practice To overcome this spectral bias, we use a Fourier feature mapping to transform the effective NTK into a stationary kernel with a tunable bandwidth We suggest an approach for selecting problem-specific Fourier features that greatly improves the performance of MLPs for low-dimensional regression tasks relevant to the computer vision and graphics communities

787 citations