scispace - formally typeset
Search or ask a question
Author

Seyed Mohammad Mirjalili

Other affiliations: Shahid Beheshti University
Bio: Seyed Mohammad Mirjalili is an academic researcher from Concordia University. The author has contributed to research in topics: Particle swarm optimization & Heuristic (computer science). The author has an hindex of 16, co-authored 33 publications receiving 9815 citations. Previous affiliations of Seyed Mohammad Mirjalili include Shahid Beheshti University.

Papers
More filters
Journal ArticleDOI
TL;DR: The results of the classical engineering design problems and real application prove that the proposed GWO algorithm is applicable to challenging problems with unknown search spaces.

10,082 citations

Journal ArticleDOI
TL;DR: The qualitative and quantitative results prove the efficiency of SSA and MSSA and demonstrate the merits of the algorithms proposed in solving real-world problems with difficult and unknown search spaces.

3,027 citations

Journal ArticleDOI
TL;DR: This paper proposes a novel nature-inspired algorithm called Multi-Verse Optimizer, based on three concepts in cosmology: white hole, black hole, and wormhole, which outperforms the best algorithms in the literature on the majority of the test beds.
Abstract: This paper proposes a novel nature-inspired algorithm called Multi-Verse Optimizer (MVO). The main inspirations of this algorithm are based on three concepts in cosmology: white hole, black hole, and wormhole. The mathematical models of these three concepts are developed to perform exploration, exploitation, and local search, respectively. The MVO algorithm is first benchmarked on 19 challenging test problems. It is then applied to five real engineering problems to further confirm its performance. To validate the results, MVO is compared with four well-known algorithms: Grey Wolf Optimizer, Particle Swarm Optimization, Genetic Algorithm, and Gravitational Search Algorithm. The results prove that the proposed algorithm is able to provide very competitive results and outperforms the best algorithms in the literature on the majority of the test beds. The results of the real case studies also demonstrate the potential of MVO in solving real problems with unknown search spaces. Note that the source codes of the proposed MVO algorithm are publicly available at http://www.alimirjalili.com/MVO.html.

1,752 citations

Journal ArticleDOI
TL;DR: A novel multi-objective algorithm called Multi-Objective Grey Wolf Optimizer (MOGWO) is proposed in order to optimize problems with multiple objectives for the first time.
Abstract: Due to the novelty of the Grey Wolf Optimizer (GWO), there is no study in the literature to design a multi-objective version of this algorithm. This paper proposes a Multi-Objective Grey Wolf Optimizer (MOGWO) in order to optimize problems with multiple objectives for the first time. A fixed-sized external archive is integrated to the GWO for saving and retrieving the Pareto optimal solutions. This archive is then employed to define the social hierarchy and simulate the hunting behavior of grey wolves in multi-objective search spaces. The proposed method is tested on 10 multi-objective benchmark problems and compared with two well-known meta-heuristics: Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D) and Multi-Objective Particle Swarm Optimization (MOPSO). The qualitative and quantitative results show that the proposed algorithm is able to provide very competitive results and outperforms other algorithms. Note that the source codes of MOGWO are publicly available at http://www.alimirjalili.com/GWO.html. A novel multi-objective algorithm called Multi-objective Grey Wolf Optimizer is proposed.MOGWO is benchmarked on 10 challenging multi-objective test problems.The quantitative results show the superior convergence and coverage of MOGWO.The coverage ability of MOGWO is confirmed by the qualitative results as well.

967 citations

Journal ArticleDOI
TL;DR: The proposed binary bat algorithm (BBA) is able to significantly outperform others on majority of the benchmark functions and there is a real application of the proposed method in optical engineering called optical buffer design that evidence the superior performance of BBA in practice.
Abstract: Bat algorithm (BA) is one of the recently proposed heuristic algorithms imitating the echolocation behavior of bats to perform global optimization. The superior performance of this algorithm has been proven among the other most well-known algorithms such as genetic algorithm (GA) and particle swarm optimization (PSO). However, the original version of this algorithm is suitable for continuous problems, so it cannot be applied to binary problems directly. In this paper, a binary version of this algorithm is proposed. A comparative study with binary PSO and GA over twenty-two benchmark functions is conducted to draw a conclusion. Furthermore, Wilcoxon's rank-sum nonparametric statistical test was carried out at 5 % significance level to judge whether the results of the proposed algorithm differ from those of the other algorithms in a statistically significant way. The results prove that the proposed binary bat algorithm (BBA) is able to significantly outperform others on majority of the benchmark functions. In addition, there is a real application of the proposed method in optical engineering called optical buffer design at the end of the paper. The results of the real application also evidence the superior performance of BBA in practice.

549 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The results of the classical engineering design problems and real application prove that the proposed GWO algorithm is applicable to challenging problems with unknown search spaces.

10,082 citations

Journal ArticleDOI
TL;DR: Optimization results prove that the WOA algorithm is very competitive compared to the state-of-art meta-heuristic algorithms as well as conventional methods.

7,090 citations

Journal ArticleDOI
TL;DR: The qualitative and quantitative results prove the efficiency of SSA and MSSA and demonstrate the merits of the algorithms proposed in solving real-world problems with difficult and unknown search spaces.

3,027 citations

Journal ArticleDOI
TL;DR: The MFO algorithm is compared with other well-known nature-inspired algorithms on 29 benchmark and 7 real engineering problems and the statistical results show that this algorithm is able to provide very promising and competitive results.
Abstract: In this paper a novel nature-inspired optimization paradigm is proposed called Moth-Flame Optimization (MFO) algorithm. The main inspiration of this optimizer is the navigation method of moths in nature called transverse orientation. Moths fly in night by maintaining a fixed angle with respect to the moon, a very effective mechanism for travelling in a straight line for long distances. However, these fancy insects are trapped in a useless/deadly spiral path around artificial lights. This paper mathematically models this behaviour to perform optimization. The MFO algorithm is compared with other well-known nature-inspired algorithms on 29 benchmark and 7 real engineering problems. The statistical results on the benchmark functions show that this algorithm is able to provide very promising and competitive results. Additionally, the results of the real problems demonstrate the merits of this algorithm in solving challenging problems with constrained and unknown search spaces. The paper also considers the application of the proposed algorithm in the field of marine propeller design to further investigate its effectiveness in practice. Note that the source codes of the MFO algorithm are publicly available at http://www.alimirjalili.com/MFO.html.

2,892 citations

Journal ArticleDOI
TL;DR: The statistical results and comparisons show that the HHO algorithm provides very promising and occasionally competitive results compared to well-established metaheuristic techniques.

2,871 citations