scispace - formally typeset
Search or ask a question
Author

Shabab Bazrafkan

Bio: Shabab Bazrafkan is an academic researcher from University of Antwerp. The author has contributed to research in topics: Artificial neural network & Deep learning. The author has an hindex of 11, co-authored 43 publications receiving 706 citations. Previous affiliations of Shabab Bazrafkan include National University of Ireland, Galway & Shiraz University of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: Smart augmentation works, by creating a network that learns how to generate augmented data during the training process of a target network in a way that reduces that networks loss, and allows to learn augmentations that minimize the error of that network.
Abstract: A recurring problem faced when training neural networks is that there is typically not enough data to maximize the generalization capability of deep neural networks. There are many techniques to address this, including data augmentation, dropout, and transfer learning. In this paper, we introduce an additional method, which we call smart augmentation and we show how to use it to increase the accuracy and reduce over fitting on a target network. Smart augmentation works, by creating a network that learns how to generate augmented data during the training process of a target network in a way that reduces that networks loss. This allows us to learn augmentations that minimize the error of that network. Smart augmentation has shown the potential to increase accuracy by demonstrably significant measures on all data sets tested. In addition, it has shown potential to achieve similar or improved performance levels with significantly smaller network sizes in a number of tested cases.

354 citations

Journal ArticleDOI
TL;DR: The current state of deep learning is reviewed, why it has managed to improve on the long-standing techniques of conventional neural networks is explained, and how to get started with adopting deep learning into your own research activities to solve both new and old problems and build better, smarter consumer devices and services.
Abstract: In the last few years, we have witnessed an exponential growth in research activity into the advanced training of convolutional neural networks (CNNs), a field that has become known as deep learning. This has been triggered by a combination of the availability of significantly larger data sets, thanks in part to a corresponding growth in big data, and the arrival of new graphics-processing-unit (GPU)-based hardware that enables these large data sets to be processed in reasonable timescales. Suddenly, a wide variety of long-standing problems in machine learning, artificial intelligence, and computer vision have seen significant improvements, often sufficient to break through long-standing performance barriers. Across multiple fields, these achievements have inspired the development of improved tools and methodologies leading to even broader applicability of deep learning. The new generation of smart assistants, such as Alexa, Hello Google, and others, have their roots and learning algorithms tied to deep learning. In this article, we review the current state of deep learning, explain what it is, why it has managed to improve on the long-standing techniques of conventional neural networks, and, most importantly, how you can get started with adopting deep learning into your own research activities to solve both new and old problems and build better, smarter consumer devices and services.

191 citations

Journal ArticleDOI
TL;DR: In this paper, an end-to-end Fully Convolutional Deep Neural Network (FCDNN) was proposed to perform the iris segmentation task for lower-quality iris images.

105 citations

Proceedings ArticleDOI
08 Jan 2017
TL;DR: It is shown that the classification accuracy is significantly lower when the network is trained with one database and tested with a different database, and a solution for obtaining a general and robust network is given.
Abstract: By growing the capacity and processing power of the handheld devices nowadays, a wide range of capabilities can be implemented in these devices to make them more intelligent and user friendly. Determining the mood of the user can be used in order to provide suitable reactions from the device in different conditions. One of the most studied ways of mood detection is by using facial expressions, which is still one of the challenging fields in pattern recognition and machine learning science. Deep Neural Networks (DNN) have been widely used in order to overcome the difficulties in facial expression classification. In this paper it is shown that the classification accuracy is significantly lower when the network is trained with one database and tested with a different database. A solution for obtaining a general and robust network is given as well.

36 citations

Journal ArticleDOI
TL;DR: In this article, a data augmentation methodology is presented and applied to generate a large dataset of off-axis iris regions and train a low-complexity deep neural network.

34 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This survey will present existing methods for Data Augmentation, promising developments, and meta-level decisions for implementing DataAugmentation, a data-space solution to the problem of limited data.
Abstract: Deep convolutional neural networks have performed remarkably well on many Computer Vision tasks. However, these networks are heavily reliant on big data to avoid overfitting. Overfitting refers to the phenomenon when a network learns a function with very high variance such as to perfectly model the training data. Unfortunately, many application domains do not have access to big data, such as medical image analysis. This survey focuses on Data Augmentation, a data-space solution to the problem of limited data. Data Augmentation encompasses a suite of techniques that enhance the size and quality of training datasets such that better Deep Learning models can be built using them. The image augmentation algorithms discussed in this survey include geometric transformations, color space augmentations, kernel filters, mixing images, random erasing, feature space augmentation, adversarial training, generative adversarial networks, neural style transfer, and meta-learning. The application of augmentation methods based on GANs are heavily covered in this survey. In addition to augmentation techniques, this paper will briefly discuss other characteristics of Data Augmentation such as test-time augmentation, resolution impact, final dataset size, and curriculum learning. This survey will present existing methods for Data Augmentation, promising developments, and meta-level decisions for implementing Data Augmentation. Readers will understand how Data Augmentation can improve the performance of their models and expand limited datasets to take advantage of the capabilities of big data.

5,782 citations

Posted Content
TL;DR: This paper shows that the simple regularization technique of randomly masking out square regions of input during training, which is called cutout, can be used to improve the robustness and overall performance of convolutional neural networks.
Abstract: Convolutional neural networks are capable of learning powerful representational spaces, which are necessary for tackling complex learning tasks. However, due to the model capacity required to capture such representations, they are often susceptible to overfitting and therefore require proper regularization in order to generalize well. In this paper, we show that the simple regularization technique of randomly masking out square regions of input during training, which we call cutout, can be used to improve the robustness and overall performance of convolutional neural networks. Not only is this method extremely easy to implement, but we also demonstrate that it can be used in conjunction with existing forms of data augmentation and other regularizers to further improve model performance. We evaluate this method by applying it to current state-of-the-art architectures on the CIFAR-10, CIFAR-100, and SVHN datasets, yielding new state-of-the-art results of 2.56%, 15.20%, and 1.30% test error respectively. Code is available at this https URL

2,481 citations

09 Mar 2012
TL;DR: Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed to mimic biological neural systems as mentioned in this paper, and they have been widely used in computer vision applications.
Abstract: Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed to mimic biological neural systems. In this entry, we introduce ANN using familiar econometric terminology and provide an overview of ANN modeling approach and its implementation methods. † Correspondence: Chung-Ming Kuan, Institute of Economics, Academia Sinica, 128 Academia Road, Sec. 2, Taipei 115, Taiwan; ckuan@econ.sinica.edu.tw. †† I would like to express my sincere gratitude to the editor, Professor Steven Durlauf, for his patience and constructive comments on early drafts of this entry. I also thank Shih-Hsun Hsu and Yu-Lieh Huang for very helpful suggestions. The remaining errors are all mine.

2,069 citations

Proceedings ArticleDOI
Ekin D. Cubuk1, Barret Zoph1, Dandelion Mane, Vijay K. Vasudevan1, Quoc V. Le1 
15 Jun 2019
TL;DR: This paper describes a simple procedure called AutoAugment to automatically search for improved data augmentation policies, which achieves state-of-the-art accuracy on CIFAR-10, CIFar-100, SVHN, and ImageNet (without additional data).
Abstract: Data augmentation is an effective technique for improving the accuracy of modern image classifiers. However, current data augmentation implementations are manually designed. In this paper, we describe a simple procedure called AutoAugment to automatically search for improved data augmentation policies. In our implementation, we have designed a search space where a policy consists of many sub-policies, one of which is randomly chosen for each image in each mini-batch. A sub-policy consists of two operations, each operation being an image processing function such as translation, rotation, or shearing, and the probabilities and magnitudes with which the functions are applied. We use a search algorithm to find the best policy such that the neural network yields the highest validation accuracy on a target dataset. Our method achieves state-of-the-art accuracy on CIFAR-10, CIFAR-100, SVHN, and ImageNet (without additional data). On ImageNet, we attain a Top-1 accuracy of 83.5% which is 0.4% better than the previous record of 83.1%. On CIFAR-10, we achieve an error rate of 1.5%, which is 0.6% better than the previous state-of-the-art. Augmentation policies we find are transferable between datasets. The policy learned on ImageNet transfers well to achieve significant improvements on other datasets, such as Oxford Flowers, Caltech-101, Oxford-IIT Pets, FGVC Aircraft, and Stanford Cars.

1,902 citations

Proceedings Article
01 Jan 2020
TL;DR: This work proposes a simplified search space that vastly reduces the computational expense of automated augmentation, and permits the removal of a separate proxy task.
Abstract: Recent work has shown that data augmentation has the potential to significantly improve the generalization of deep learning models. Recently, automated augmentation strategies have led to state-of-the-art results in image classification and object detection. While these strategies were optimized for improving validation accuracy, they also led to state-of-the-art results in semi-supervised learning and improved robustness to common corruptions of images. An obstacle to a large-scale adoption of these methods is a separate search phase which increases the training complexity and may substantially increase the computational cost. Additionally, due to the separate search phase, these approaches are unable to adjust the regularization strength based on model or dataset size. Automated augmentation policies are often found by training small models on small datasets and subsequently applied to train larger models. In this work, we remove both of these obstacles. RandAugment has a significantly reduced search space which allows it to be trained on the target task with no need for a separate proxy task. Furthermore, due to the parameterization, the regularization strength may be tailored to different model and dataset sizes. RandAugment can be used uniformly across different tasks and datasets and works out of the box, matching or surpassing all previous automated augmentation approaches on CIFAR-10/100, SVHN, and ImageNet. On the ImageNet dataset we achieve 85.0% accuracy, a 0.6% increase over the previous state-of-the-art and 1.0% increase over baseline augmentation. On object detection, RandAugment leads to 1.0-1.3% improvement over baseline augmentation, and is within 0.3% mAP of AutoAugment on COCO. Finally, due to its interpretable hyperparameter, RandAugment may be used to investigate the role of data augmentation with varying model and dataset size. Code is available online.

1,581 citations