scispace - formally typeset
Search or ask a question
Author

Shaden Kamhawi

Bio: Shaden Kamhawi is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Leishmania & Leishmania major. The author has an hindex of 47, co-authored 142 publications receiving 8556 citations. Previous affiliations of Shaden Kamhawi include Oswaldo Cruz Foundation & Government of the United States of America.


Papers
More filters
Journal ArticleDOI
15 Aug 2008-Science
TL;DR: Infection with the obligate intracellular protozoan Leishmania major (L.m.m.) appears to have evolved to both evade and exploit the innate host response to sand fly bite in order to establish and promote disease.
Abstract: Infection with the obligate intracellular protozoan Leishmania is thought to be initiated by direct parasitization of macrophages, but the early events following transmission to the skin by vector sand flies have been difficult to examine directly. Using dynamic intravital microscopy and flow cytometry, we observed a rapid and sustained neutrophilic infiltrate at localized sand fly bite sites. Invading neutrophils efficiently captured Leishmania major (L.m.) parasites early after sand fly transmission or needle inoculation, but phagocytosed L.m. remained viable and infected neutrophils efficiently initiated infection. Furthermore, neutrophil depletion reduced, rather than enhanced, the ability of parasites to establish productive infections. Thus, L.m. appears to have evolved to both evade and exploit the innate host response to sand fly bite in order to establish and promote disease.

744 citations

Journal ArticleDOI
TL;DR: A novel therapeutic approach to eliminate latency, infection reservoirs, and the risk of reactivation disease is suggested as sterile cure was achieved in IL-10–deficient and IL-4/IL-10 double-deficient mice.
Abstract: Some pathogens (e.g., Mycobacterium tuberculosis, Toxoplasma gondii, Leishmania spp) have been shown to persist in their host after clinical cure, establishing the risk of disease reactivation. We analyzed the conditions necessary for the long term maintenance of Leishmania major in genetically resistant C57BL/6 mice after spontaneous healing of their dermal lesions. Interleukin (IL)-10 was found to play an essential role in parasite persistence as sterile cure was achieved in IL-10–deficient and IL-4/IL-10 double-deficient mice. The requirement for IL-10 in establishing latency associated with natural infection was confirmed in IL-10–deficient mice challenged by bite of infected sand flies. The host-parasite equilibrium was maintained by CD4+ and CD8+ T cells which were each able to release IL-10 or interferon (IFN)-γ, and were found to accumulate in chronic sites of infection, including the skin and draining lymph node. A high frequency of the dermal CD4+ T cells released both IL-10 and IFN-γ. Wild-type mice treated transiently during the chronic phase with anti–IL-10 receptor antibodies achieved sterile cure, suggesting a novel therapeutic approach to eliminate latency, infection reservoirs, and the risk of reactivation disease.

583 citations

Journal ArticleDOI
TL;DR: The studies reveal a dramatic exacerbating effect of SGS on lesion development in the dermal site, and a complete abrogation of this effect in mice preexposed to salivary components, the first to suggest that for individuals at risk of vector-borne infections, history of exposure to vector saliva might influence the outcome of Exposure to transmitted parasites.
Abstract: We have developed a model of cutaneous leishmaniasis due to Leishmania major that seeks to mimic the natural conditions of infection. 1,000 metacyclic promastigotes were coinoculated with a salivary gland sonicate (SGS) obtained from a natural vector, Phlebotomus papatasii, into the ear dermis of naive mice or of mice preexposed to SGS. The studies reveal a dramatic exacerbating effect of SGS on lesion development in the dermal site, and a complete abrogation of this effect in mice preexposed to salivary components. In both BALB/c and C57Bl/6 (B/6) mice, the dermal lesions appeared earlier, were more destructive, and contained greater numbers of parasites after infection in the presence of SGS. Furthermore, coinoculation of SGS converted B/6 mice into a nonhealing phenotype. No effect of SGS was seen in either IL-4- deficient or in SCID mice. Disease exacerbation in both BALB/c and B/6 mice was associated with an early (6 h) increase in the frequency of epidermal cells producing type 2 cytokines. SGS did not elicit type 2 cytokines in the epidermis of mice previously injected with SGS. These mice made antisaliva antibodies that were able to neutralize the ability of SGS to enhance infection and to elicit IL-4 and IL-5 responses in the epidermis. These results are the first to suggest that for individuals at risk of vector-borne infections, history of exposure to vector saliva might influence the outcome of exposure to transmitted parasites.

426 citations

Journal ArticleDOI
TL;DR: Results indicate that DTH response against saliva provides most or all of the protective effects of this vaccine and that salivary gland proteins or their cDNAs are viable vaccine targets against leishmaniasis.
Abstract: Leishmania parasites are transmitted to their vertebrate hosts by infected phlebotomine sand fly bites. Sand fly saliva is known to enhance Leishmania infection, while immunity to the saliva protects against infection as determined by coinoculation of parasites with vector salivary gland homogenates (SGHs) or by infected sand fly bites (Kamhawi, S., Y. Belkaid, G. Modi, E. Rowton, and D. Sacks. 2000. Science. 290:1351–1354). We have now characterized nine salivary proteins of Phlebotomus papatasi, the vector of Leishmania major. One of these salivary proteins, extracted from SDS gels and having an apparent mol wt of 15 kD, was able to protect vaccinated mice challenged with parasites plus SGH. A DNA vaccine containing the cDNA for the predominant 15-kD protein (named SP15) provided this same protection. Protection lasted at least 3 mo after immunization. The vaccine produced both intense humoral and delayed-type hypersensitivity (DTH) reactions. B cell–deficient mice immunized with the SP15 plasmid vaccine successfully controlled Leishmania infection when injected with Leishmania plus SGH. These results indicate that DTH response against saliva provides most or all of the protective effects of this vaccine and that salivary gland proteins or their cDNAs are viable vaccine targets against leishmaniasis.

382 citations

Journal ArticleDOI
TL;DR: Leishmania-sand fly interactions are reviewed in the context of the potential barriers to the complete development of the parasite that exist within the midgut environment of phlebotomine flies and the molecular adaptations that the parasite has evolved that permit the development of transmissible infections to proceed.
Abstract: Leishmania-sand fly interactions are reviewed in the context of the potential barriers to the complete development of the parasite that exist within the midgut environment of phlebotomine flies and the molecular adaptations that the parasite has evolved that permit the development of transmissible infections to proceed. Cell surface and secreted phosphoglycans protect the parasite from the proteolytic activities of the blood-fed midgut, mediate attachment to the gut wall in order to maintain infection during excretion of the bloodmeal, and contribute to the formation of a biological plug in the anterior gut that may promote transmission by bite. The importance of vector saliva in modulating the host response to transmitted parasites is also reviewed.

367 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI

3,734 citations

Journal ArticleDOI
TL;DR: The understanding of the relative roles of IL-12 and other factors in TH1-type maturation of both CD4+ and CD8+ T cells is discussed here, including the participation in this process ofIL-23 and IL-27, two recently discovered members of the new family of heterodimeric cytokines.
Abstract: Interleukin-12 (IL-12) is a heterodimeric pro-inflammatory cytokine that induces the production of interferon-gamma (IFN-gamma), favours the differentiation of T helper 1 (T(H)1) cells and forms a link between innate resistance and adaptive immunity. Dendritic cells (DCs) and phagocytes produce IL-12 in response to pathogens during infection. Production of IL-12 is dependent on differential mechanisms of regulation of expression of the genes encoding IL-12, patterns of Toll-like receptor (TLR) expression and cross-regulation between the different DC subsets, involving cytokines such as IL-10 and type I IFN. Recent data, however, argue against an absolute requirement for IL-12 for T(H)1 responses. Our understanding of the relative roles of IL-12 and other factors in T(H)1-type maturation of both CD4+ and CD8+ T cells is discussed here, including the participation in this process of IL-23 and IL-27, two recently discovered members of the new family of heterodimeric cytokines.

3,591 citations

Journal ArticleDOI
TL;DR: The enhancement of suppressor-cell function might prove useful for the treatment of immune-mediated diseases, whereas the downregulation of these cells might be beneficial for the enhancement of the immunogenicity of vaccines that are specific for tumour antigens.
Abstract: Several mechanisms control discrimination between self and non-self, including the thymic deletion of autoreactive T cells and the induction of anergy in the periphery. In addition to these passive mechanisms, evidence has accumulated for the active suppression of autoreactivity by a population of regulatory or suppressor T cells that co-express CD4 and CD25 (the interleukin-2 receptor alpha-chain). CD4+ CD25+ T cells are powerful inhibitors of T-cell activation both in vivo and in vitro. The enhancement of suppressor-cell function might prove useful for the treatment of immune-mediated diseases, whereas the downregulation of these cells might be beneficial for the enhancement of the immunogenicity of vaccines that are specific for tumour antigens.

2,246 citations

Journal ArticleDOI
TL;DR: I. Foldamer Research 3910 A. Backbones Utilizing Bipyridine Segments 3944 1.
Abstract: III. Foldamer Research 3910 A. Overview 3910 B. Motivation 3910 C. Methods 3910 D. General Scope 3912 IV. Peptidomimetic Foldamers 3912 A. The R-Peptide Family 3913 1. Peptoids 3913 2. N,N-Linked Oligoureas 3914 3. Oligopyrrolinones 3915 4. Oxazolidin-2-ones 3916 5. Azatides and Azapeptides 3916 B. The â-Peptide Family 3917 1. â-Peptide Foldamers 3917 2. R-Aminoxy Acids 3937 3. Sulfur-Containing â-Peptide Analogues 3937 4. Hydrazino Peptides 3938 C. The γ-Peptide Family 3938 1. γ-Peptide Foldamers 3938 2. Other Members of the γ-Peptide Family 3941 D. The δ-Peptide Family 3941 1. Alkene-Based δ-Amino Acids 3941 2. Carbopeptoids 3941 V. Single-Stranded Abiotic Foldamers 3944 A. Overview 3944 B. Backbones Utilizing Bipyridine Segments 3944 1. Pyridine−Pyrimidines 3944 2. Pyridine−Pyrimidines with Hydrazal Linkers 3945

1,922 citations