scispace - formally typeset
Search or ask a question
Author

Shahid Zaman

Other affiliations: Fulbourn Hospital, University of Bristol, Royal Free Hospital  ...read more
Bio: Shahid Zaman is an academic researcher from University of Cambridge. The author has contributed to research in topics: Population & Dementia. The author has an hindex of 21, co-authored 75 publications receiving 2963 citations. Previous affiliations of Shahid Zaman include Fulbourn Hospital & University of Bristol.


Papers
More filters
Journal ArticleDOI
11 Jun 1999-Science
TL;DR: Tetanic synaptic stimulation induced a rapid delivery of tagged receptors into dendritic spines as well as clusters in dendrites and may contribute to the enhanced AMPA receptor-mediated transmission observed during long-term potentiation and activity-dependent synaptic maturation.
Abstract: To monitor changes in alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor distribution in living neurons, the AMPA receptor subunit GluR1 was tagged with green fluorescent protein (GFP). This protein (GluR1-GFP) was functional and was transiently expressed in hippocampal CA1 neurons. In dendrites visualized with two-photon laser scanning microscopy or electron microscopy, most of the GluR1-GFP was intracellular, mimicking endogenous GluR1 distribution. Tetanic synaptic stimulation induced a rapid delivery of tagged receptors into dendritic spines as well as clusters in dendrites. These postsynaptic trafficking events required synaptic N-methyl-D-aspartate (NMDA) receptor activation and may contribute to the enhanced AMPA receptor-mediatedtransmission observed during long-term potentiation and activity-dependent synaptic maturation.

1,316 citations

Journal ArticleDOI
TL;DR: PICK1 acts to downregulate the GluR2 content of AMPARs at hippocampal CA1 synapses, thereby increasing synaptic strength at resting membrane potentials, and demonstrates that AMPAR subunit composition is physiologically regulated through a mechanism involving PICK1 PDZ domain interactions.
Abstract: PICK1 (protein interacting with C kinase-1) regulates the surface expression of the AMPA receptor (AMPAR) GluR2 subunit, however, the functional consequences of this interaction are not well understood. Previous work has suggested that PICK1 promotes the internalization of AMPARs. However, we found that when PICK1 is virally expressed in the CA1 region of hippocampal slices, it causes an increase in AMPAR-mediated EPSC amplitude. This effect is associated with increased AMPAR rectification and sensitivity to polyamine toxin. These effects are blocked by PKC or calcium/calmodulin-dependent protein kinase II inhibitors, indicating that the virally expressed PICK1 signals through an endogenous kinase cascade. In contrast, blockade of interactions with GluR2 at the N-ethylmaleimide-sensitive factor site did not cause a change in subunit composition, suggesting that the effects of PICK1 are not simply a nonspecific consequence of removing AMPARs from the surface. Immunocytochemical and biochemical analyses in dissociated cultured hippocampal neurons show that PICK1 causes a decrease in endogenous GluR2 surface expression but no change in GluR1 surface levels. To address the physiological role of PICK1, we virally expressed C-terminal GluR2 peptides. Blockade of endogenous PICK1 PDZ (postsynaptic density-95/Discs large/zona occludens-1) domain interactions produced opposite effects on synaptic strength and AMPAR rectification to those observed with PICK1 expression. This demonstrates that AMPAR subunit composition is physiologically regulated through a mechanism involving PICK1 PDZ domain interactions. These findings suggest that PICK1 acts to downregulate the GluR2 content of AMPARs at hippocampal CA1 synapses, thereby increasing synaptic strength at resting membrane potentials.

194 citations

Journal ArticleDOI
TL;DR: It is concluded that the steroid modification of the GABAA receptor is strongly influenced by the alpha- and the gamma 2-subunit types.

172 citations

Journal ArticleDOI
TL;DR: Alzheimer's disease in individuals with Down syndrome has a long preclinical phase in which biomarkers follow a predictable order of changes over more than two decades, which makes this population a suitable target for Alzheimer's disease preventive treatments.

155 citations

Journal ArticleDOI
TL;DR: Adults with Down syndrome (DS) invariably develop Alzheimer's disease (AD) neuropathology and understanding amyloid deposition in DS can yield crucial information about disease pathogenesis.
Abstract: Introduction Adults with Down syndrome (DS) invariably develop Alzheimer's disease (AD) neuropathology. Understanding amyloid deposition in DS can yield crucial information about disease pathogenesis. Methods Forty-nine adults with DS aged 25–65 underwent positron emission tomography with Pittsburgh compound–B (PIB). Regional PIB binding was assessed with respect to age, clinical, and cognitive status. Results Abnormal PIB binding became evident from 39 years, first in striatum followed by rostral prefrontal-cingulo-parietal regions, then caudal frontal, rostral temporal, primary sensorimotor and occipital, and finally parahippocampal cortex, thalamus, and amygdala. PIB binding was related to age, diagnostic status, and cognitive function. Discussion PIB binding in DS, first appearing in striatum, began around age 40 and was strongly associated with dementia and cognitive decline. The absence of a substantial time lag between amyloid accumulation and cognitive decline contrasts to sporadic/familial AD and suggests this population's suitability for an amyloid primary prevention trial.

139 citations


Cited by
More filters
Journal ArticleDOI
30 Sep 2004-Neuron
TL;DR: This work reviews those forms of LTP and LTD for which mechanisms have been most firmly established and examples are provided that show how these mechanisms can contribute to experience-dependent modifications of brain function.

3,767 citations

Journal ArticleDOI
TL;DR: Multiphoton microscopy has found a niche in the world of biological imaging as the best noninvasive means of fluorescence microscopy in tissue explants and living animals and its use is now increasing exponentially.
Abstract: Multiphoton microscopy (MPM) has found a niche in the world of biological imaging as the best noninvasive means of fluorescence microscopy in tissue explants and living animals. Coupled with transgenic mouse models of disease and 'smart' genetically encoded fluorescent indicators, its use is now increasing exponentially. Properly applied, it is capable of measuring calcium transients 500 microm deep in a mouse brain, or quantifying blood flow by imaging shadows of blood cells as they race through capillaries. With the multitude of possibilities afforded by variations of nonlinear optics and localized photochemistry, it is possible to image collagen fibrils directly within tissue through nonlinear scattering, or release caged compounds in sub-femtoliter volumes.

3,738 citations

Journal ArticleDOI
17 Sep 1999-Science
TL;DR: A simple model is described that unifies much of the data that previously were viewed as contradictory about the molecular mechanisms of this long-lasting increase in synaptic strength in the hippocampus.
Abstract: Long-term potentiation of synaptic transmission in the hippocampus is the leading experimental model for the synaptic changes that may underlie learning and memory. This review presents a current understanding of the molecular mechanisms of this long-lasting increase in synaptic strength and describes a simple model that unifies much of the data that previously were viewed as contradictory.

2,769 citations

Journal ArticleDOI
TL;DR: The growing literature that supports a critical role for AMPA receptors trafficking in LTP and LTD is reviewed, focusing on the roles proposed for specific AMPA receptor subunits and their interacting proteins.
Abstract: Activity-dependent changes in synaptic function are believed to underlie the formation of memories. Two prominent examples are long-term potentiation (LTP) and long-term depression (LTD), whose mechanisms have been the subject of considerable scrutiny over the past few decades. Here we review the growing literature that supports a critical role for AMPA receptor trafficking in LTP and LTD, focusing on the roles proposed for specific AMPA receptor subunits and their interacting proteins. While much work remains to understand the molecular basis for synaptic plasticity, recent results on AMPA receptor trafficking provide a clear conceptual framework for future studies.

2,587 citations

Journal ArticleDOI
TL;DR: Genetic mutations that prevent persistent activation of CaMKII block LTP, experience-dependent plasticity and behavioural memory, making this kinase a leading candidate in the search for the molecular basis of memory.
Abstract: Long-term potentiation (LTP) in the CA1 region of the hippocampus has been the primary model by which to study the cellular and molecular basis of memory. Calcium/calmodulin-dependent protein kinase II (CaMKII) is necessary for LTP induction, is persistently activated by stimuli that elicit LTP, and can, by itself, enhance the efficacy of synaptic transmission. The analysis of CaMKII autophosphorylation and dephosphorylation indicates that this kinase could serve as a molecular switch that is capable of long-term memory storage. Consistent with such a role, mutations that prevent persistent activation of CaMKII block LTP, experience-dependent plasticity and behavioural memory. These results make CaMKII a leading candidate in the search for the molecular basis of memory.

1,864 citations