scispace - formally typeset
Search or ask a question
Author

Shahin Nazarian

Other affiliations: Magma Design Automation
Bio: Shahin Nazarian is an academic researcher from University of Southern California. The author has contributed to research in topics: Logic gate & Smart grid. The author has an hindex of 18, co-authored 121 publications receiving 1420 citations. Previous affiliations of Shahin Nazarian include Magma Design Automation.


Papers
More filters
Journal ArticleDOI
TL;DR: A network science inspired deep learning framework is presented to accurately predict which Twitter posts are likely to become central nodes (i.e., high centrality) in a misinformation network from only one sentence without the need to know the whole network topology.
Abstract: The global rise of COVID-19 health risk has triggered the related misinformation infodemic. We present the first analysis of COVID-19 misinformation networks and determine few of its implications. Firstly, we analyze the spread trends of COVID-19 misinformation and discover that the COVID-19 misinformation statistics are well fitted by a log-normal distribution. Secondly, we form misinformation networks by taking individual misinformation as a node and similarity between misinformation nodes as links, and we decipher the laws of COVID-19 misinformation network evolution: (1) We discover that misinformation evolves to optimize the network information transfer over time with the sacrifice of robustness. (2) We demonstrate the co-existence of fit get richer and rich get richer phenomena in misinformation networks. (3) We show that a misinformation network evolution with node deletion mechanism captures well the public attention shift on social media. Lastly, we present a network science inspired deep learning framework to accurately predict which Twitter posts are likely to become central nodes (i.e., high centrality) in a misinformation network from only one sentence without the need to know the whole network topology. With the network analysis and the central node prediction, we propose that if we correctly suppress certain central nodes in the misinformation network, the information transfer of network would be severely impacted.

13 citations

Journal ArticleDOI
TL;DR: TEI-power is presented, a dynamic voltage and frequency scaling--based dynamic thermal management technique that considers the TEI phenomenon and also the superlinear dependencies of power consumption components on the temperature and outlines a real-time trade-off between delay and power consumption as a function of the chip temperature to provide significant energy savings.
Abstract: FinFETs have emerged as a promising replacement for planar CMOS devices in sub-20nm technology nodes. However, based on the temperature effect inversion (TEI) phenomenon observed in FinFET devices, the delay characteristics of FinFET circuits in sub-, near-, and superthreshold voltage regimes may be fundamentally different from those of CMOS circuits with nominal voltage operation. For example, FinFET circuits may run faster in higher temperatures. Therefore, the existing CMOS-based and TEI-unaware dynamic power and thermal management techniques would not be applicable. In this article, we present TEI-power, a dynamic voltage and frequency scaling--based dynamic thermal management technique that considers the TEI phenomenon and also the superlinear dependencies of power consumption components on the temperature and outlines a real-time trade-off between delay and power consumption as a function of the chip temperature to provide significant energy savings, with no performance penalty—namely, up to 42% energy savings for small circuits where the logic cell delay is dominant and up to 36% energy savings for larger circuits where the interconnect delay is considerable.

13 citations

Proceedings ArticleDOI
30 Apr 2006
TL;DR: Monte Carlo Spice-based experimental results demonstrate the effectiveness of the proposed approach in accurately modeling the correlation-aware process variations and their impact on interconnect delay when crosstalk is present.
Abstract: Process variations have become a key concern of circuit designers because of their significant, yet hard to predict impact on performance and signal integrity of VLSI circuits. Statistical approaches have been suggested as the most effective substitute for corner-based approaches to deal with the variability of present process technology nodes. This paper introduces a statistical analysis of the crosstalk-aware delay of coupled interconnects considering process variations. The few existing works that have studied this problem suffer not only from shortcomings in their statistical models, but also from inaccurate crosstalk circuit models. We utilize an accurate distributed RC-p model of the interconnections to be able to model process variations close to reality. The considerable effect of correlation among the parameters of neighboring wire segments is also indicated. Statistical properties of the crosstalk-aware output delay are characterized and presented as closed-formed expressions. Monte Carlo Spice-based experimental results demonstrate the effectiveness of the proposed approach in accurately modeling the correlation-aware process variations and their impact on interconnect delay when crosstalk is present.

12 citations

Proceedings ArticleDOI
01 Sep 2012
TL;DR: This paper considers the process of determining dynamic electricity prices for electricity based on a modified Bertrand Competition Model of consumer behavior and in view of competition among multiple non-cooperative utility companies in an oligopolistic energy market and maximizes the conservative estimate on the profit for each utility company.
Abstract: Dynamic pricing and demand response are the key elements of the smart grid technologies. Utility companies can incentivize electricity customers to schedule their power hungry tasks during off-peak times of the day whereas demand response manages customers' electricity consumption in response to supply conditions or market prices. The reaction of consumers to dynamic prices creates a feedback system in the smart grid that motivates the utility companies to model the consumers' behavior in the process of determining the price. Letting the consumers select their provider of choice among multiple utility companies, may be modeled as a non-cooperative game. In this paper, we consider the process of determining dynamic electricity prices for electricity based on a modified Bertrand Competition Model of consumer behavior and in view of competition among multiple non-cooperative utility companies in an oligopolistic energy market. The proposed method maximizes the conservative estimate on the profit for each utility company. Results also demonstrate the effectiveness of the oligopolistic electrical market in decreasing the electricity cost to consumers.

11 citations

Proceedings ArticleDOI
03 Mar 2014
TL;DR: A joint optimization of transistor sizing and adaptive body biasing is proposed and optimally solved using geometric programming, and an improved logical effort-based optimization framework provides a performance improvement of up to 40.1% over the conventional logical effort method.
Abstract: Digital near-threshold logic circuits have recently been proposed for applications in the ultra-low power end of the design spectrum, where the performance is of secondary importance. However, the characteristics of MOS transistors operating in the near-threshold region are very different from those in the strong-inversion region. This paper first derives the logical effort and parasitic delay values for logic gates in multiple voltage (sub/near/super-threshold) regimes based on the transregional model. The transregional model shows higher accuracy for both sub- and near-threshold regions compared with the subthreshold model. Furthermore, the derived near-threshold logical effort method is subsequently used for delay optimization of circuits operating in both near- and super-threshold regimes. In order to achieve this goal, a joint optimization of transistor sizing and adaptive body biasing is proposed and optimally solved using geometric programming. Experimental results show that our improved logical effort-based optimization framework provides a performance improvement of up to 40.1% over the conventional logical effort method.

11 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this article, a review of thermal transport at the nanoscale is presented, emphasizing developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field.
Abstract: A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ∼1 nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interface...

1,307 citations

Journal ArticleDOI
TL;DR: This paper provides a comprehensive review of various DR schemes and programs, based on the motivations offered to the consumers to participate in the program, and presents various optimization models for the optimal control of the DR strategies that have been proposed so far.
Abstract: The smart grid concept continues to evolve and various methods have been developed to enhance the energy efficiency of the electricity infrastructure. Demand Response (DR) is considered as the most cost-effective and reliable solution for the smoothing of the demand curve, when the system is under stress. DR refers to a procedure that is applied to motivate changes in the customers' power consumption habits, in response to incentives regarding the electricity prices. In this paper, we provide a comprehensive review of various DR schemes and programs, based on the motivations offered to the consumers to participate in the program. We classify the proposed DR schemes according to their control mechanism, to the motivations offered to reduce the power consumption and to the DR decision variable. We also present various optimization models for the optimal control of the DR strategies that have been proposed so far. These models are also categorized, based on the target of the optimization procedure. The key aspects that should be considered in the optimization problem are the system's constraints and the computational complexity of the applied optimization algorithm.

854 citations

Book ChapterDOI
01 Jan 2022

818 citations