scispace - formally typeset
Search or ask a question
Author

Shai Avidan

Bio: Shai Avidan is an academic researcher from Tel Aviv University. The author has contributed to research in topics: Pixel & Template matching. The author has an hindex of 50, co-authored 138 publications receiving 15378 citations. Previous affiliations of Shai Avidan include Mitsubishi Electric Research Laboratories & Mitsubishi.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , Zhang et al. use a normalizing framework to learn a bijective mapping between the pose data distribution and a Gaussian distribution, using spatio-temporal graph convolution blocks.
Abstract: Video anomaly detection is an ill-posed problem because it relies on many parameters such as appearance, pose, camera angle, background, and more. We distill the problem to anomaly detection of human pose, thus reducing the risk of nuisance parameters such as appearance affecting the result. Focusing on pose alone also has the side benefit of reducing bias against distinct minority groups. Our model works directly on human pose graph se-quences and is exceptionally lightweight ( ∼ 1 K parame-ters), capable of running on any machine able to run the pose estimation with negligible additional resources. We leverage the highly compact pose representation in a normalizing flows framework, which we extend to tackle the unique characteristics of spatio-temporal pose data and show its advantages in this use case. Our algorithm uses normalizing flows to learn a bijective mapping between the pose data distribution and a Gaussian distribution, using spatio-temporal graph convolution blocks. The algorithm is quite general and can handle training data of only normal examples, as well as a supervised dataset that consists of labeled normal and abnormal examples. We report state-of-the-art results on two anomaly detection benchmarks - the unsupervised ShanghaiTech dataset and the recent supervised UBnormal dataset 1 .

1 citations

Journal ArticleDOI
TL;DR: Malnick et al. as mentioned in this paper proposed a method for taming a generative model to output specific image categories according to a given target distribution using a fast fine-tuning process without retraining the model.
Abstract: Generative models are becoming ever more powerful, being able to synthesize highly realistic images. We propose an algorithm for taming these models — changing the probability that the model will produce a specific image or image category. We consider generative models that are powered by normalizing flows, which allows us to reason about the exact generation probability likelihood for a given image. Our method is general purpose, and we exemplify it using models that generate human faces, a subdomain with many interesting privacy and bias considerations. Our method can be used in the context of privacy, e.g., removing a specific person from the output of a model, and also in the context of de-biasing by forcing a model to output specific image categories according to a given target distribution. Our method uses a fast fine-tuning process without retraining the model from scratch, achieving the goal in less than 1% of the time taken to initially train the generative model. We evaluate qualitatively and quantitatively, to examine the success of the taming process and output quality. Our code is publicly available at https://github.com/ ShimonMalnick/Taming_a_Generative_Model.

1 citations

Posted Content
TL;DR: Adversarial Mask as mentioned in this paper is a physical adversarial universal perturbation (UAP) against state-of-the-art facial recognition models that is applied on face masks in the form of a carefully crafted pattern.
Abstract: Deep learning-based facial recognition (FR) models have demonstrated state-of-the-art performance in the past few years, even when wearing protective medical face masks became commonplace during the COVID-19 pandemic. Given the outstanding performance of these models, the machine learning research community has shown increasing interest in challenging their robustness. Initially, researchers presented adversarial attacks in the digital domain, and later the attacks were transferred to the physical domain. However, in many cases, attacks in the physical domain are conspicuous, requiring, for example, the placement of a sticker on the face, and thus may raise suspicion in real-world environments (e.g., airports). In this paper, we propose Adversarial Mask, a physical adversarial universal perturbation (UAP) against state-of-the-art FR models that is applied on face masks in the form of a carefully crafted pattern. In our experiments, we examined the transferability of our adversarial mask to a wide range of FR model architectures and datasets. In addition, we validated our adversarial mask effectiveness in real-world experiments by printing the adversarial pattern on a fabric medical face mask, causing the FR system to identify only 3.34% of the participants wearing the mask (compared to a minimum of 83.34% with other evaluated masks).
Journal ArticleDOI
TL;DR: SampleDepth as discussed by the authors uses depth samples from previous time steps to predict a sampling mask for the current frame, which is trained to optimize the performance of a depth completion downstream task and is evaluated on two different depth completion networks and two LiDAR datasets.
Abstract: We propose SampleDepth, a Convolutional Neural Network (CNN), that is suited for an adaptive LiDAR. Typically,LiDAR sampling strategy is pre-defined, constant and independent of the observed scene. Instead of letting a LiDAR sample the scene in this agnostic fashion, SampleDepth determines, adaptively, where it is best to sample the current frame. To do that, SampleDepth uses depth samples from previous time steps to predict a sampling mask for the current frame. Crucially, SampleDepth is trained to optimize the performance of a depth completion downstream task. SampleDepth is evaluated on two different depth completion networks and two LiDAR datasets, KITTI Depth Completion and the newly introduced synthetic dataset, SHIFT. We show that SampleDepth is effective and suitable for different depth completion downstream tasks.
Posted Content
TL;DR: An algorithm for recovering depth using less than two images is proposed, where the left camera sends its image to the host computer while the right camera sends only a fraction $\epsilon$ of its image.
Abstract: We propose an algorithm for recovering depth using less than two images. Instead of having both cameras send their entire image to the host computer, the left camera sends its image to the host while the right camera sends only a fraction $\epsilon$ of its image. The key aspect is that the cameras send the information without communicating at all. Hence, the required communication bandwidth is significantly reduced. While standard image compression techniques can reduce the communication bandwidth, this requires additional computational resources on the part of the encoder (camera). We aim at designing a light weight encoder that only touches a fraction of the pixels. The burden of decoding is placed on the decoder (host). We show that it is enough for the encoder to transmit a sparse set of pixels. Using only $1+\epsilon$ images, with $\epsilon$ as little as 2% of the image, the decoder can compute a depth map. The depth map's accuracy is comparable to traditional stereo matching algorithms that require both images as input. Using the depth map and the left image, the right image can be synthesized. No computations are required at the encoder, and the decoder's runtime is linear in the images' size.

Cited by
More filters
01 Jan 2001
TL;DR: This book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts and it will show the best book collections and completed collections.
Abstract: Downloading the book in this website lists can give you more advantages. It will show you the best book collections and completed collections. So many books can be found in this website. So, this is not only this multiple view geometry in computer vision. However, this book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts. This is simple, read the soft file of the book and you get it.

14,282 citations

Book
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

8,059 citations

Journal ArticleDOI
TL;DR: A new superpixel algorithm is introduced, simple linear iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate superpixels and is faster and more memory efficient, improves segmentation performance, and is straightforward to extend to supervoxel generation.
Abstract: Computer vision applications have come to rely increasingly on superpixels in recent years, but it is not always clear what constitutes a good superpixel algorithm. In an effort to understand the benefits and drawbacks of existing methods, we empirically compare five state-of-the-art superpixel algorithms for their ability to adhere to image boundaries, speed, memory efficiency, and their impact on segmentation performance. We then introduce a new superpixel algorithm, simple linear iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate superpixels. Despite its simplicity, SLIC adheres to boundaries as well as or better than previous methods. At the same time, it is faster and more memory efficient, improves segmentation performance, and is straightforward to extend to supervoxel generation.

7,849 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
TL;DR: The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends to discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.
Abstract: The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns of both the object and the scene, nonrigid object structures, object-to-object and object-to-scene occlusions, and camera motion. Tracking is usually performed in the context of higher-level applications that require the location and/or shape of the object in every frame. Typically, assumptions are made to constrain the tracking problem in the context of a particular application. In this survey, we categorize the tracking methods on the basis of the object and motion representations used, provide detailed descriptions of representative methods in each category, and examine their pros and cons. Moreover, we discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.

5,318 citations