scispace - formally typeset
Search or ask a question
Author

Shaikh Faruque Ali

Bio: Shaikh Faruque Ali is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Energy harvesting & Vibration. The author has an hindex of 17, co-authored 78 publications receiving 935 citations. Previous affiliations of Shaikh Faruque Ali include Nancy-Université & Swansea University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the H1(e,e′K+)Λ reaction was studied as a function of the Mandelstam variable -t using data from the E01-004 (FPI-2) and E93-018 experiments that were carried out in Hall C at the 6 GeV Jefferson Laboratory.
Abstract: The H1(e,e′K+)Λ reaction was studied as a function of the Mandelstam variable -t using data from the E01-004 (FPI-2) and E93-018 experiments that were carried out in Hall C at the 6 GeV Jefferson Laboratory. The cross section was fully separated into longitudinal and transverse components, and two interference terms at four-momentum transfers Q2 of 1.00, 1.36, and 2.07GeV2. The kaon form factor was extracted from the longitudinal cross section using the Regge model by Vanderhaeghen et al. [Phys. Rev. C 57, 1454 (1998)PRVCAN0556-281310.1103/PhysRevC.57.1454]. The results establish the method, previously used successfully for pion analyses, for extracting the kaon form factor. Data from 12 GeV Jefferson Laboratory experiments are expected to have sufficient precision to distinguish between theoretical predictions, for example, recent perturbative QCD calculations with modern parton distribution amplitudes. The leading-twist behavior for light mesons is predicted to set in for values of Q2 between 5 and 10GeV2, which makes data in the few-GeV regime particularly interesting. The Q2 dependence at fixed x and -t of the longitudinal cross section that we extracted seems consistent with the QCD factorization prediction within the experimental uncertainty.

23 citations

Posted Content
29 Jul 2020
TL;DR: Positron beams, both polarized and unpolarized, are identified as essential ingredients for the experimental program at the next generation of lepton accelerators as mentioned in this paper, and they are complementary tools for a precise understanding of the electromagnetic structure of the nucleon, in both the elastic and the deep-inelastic regimes.
Abstract: Positron beams, both polarized and unpolarized, are identified as essential ingredients for the experimental program at the next generation of lepton accelerators. In the context of the Hadronic Physics program at the Jefferson Laboratory (JLab), positron beams are complementary, even essential, tools for a precise understanding of the electromagnetic structure of the nucleon, in both the elastic and the deep-inelastic regimes. For instance, elastic scattering of (un)polarized electrons and positrons off the nucleon allows for a model independent determination of the electromagnetic form factors of the nucleon. Also, the deeply virtual Compton scattering of (un)polarized electrons and positrons allows us to separate unambiguously the different contributions to the cross section of the lepto-production of photons, enabling an accurate determination of the nucleon Generalized Parton Distributions (GPDs), and providing an access to its Gravitational Form Factors. Furthermore, positron beams offer the possibility of alternative tests of the Standard Model through the search of a dark photon, the precise measurement of electroweak couplings, or the investigation of lepton flavor violation. This white paper discusses the perspectives of an experimental program with positron beams at JLab.

22 citations

Journal ArticleDOI
TL;DR: In this article, a system consisting of two electromagnetic harvesters with magnetic and mechanical couplings subjected to harmonic support excitations is proposed, where two pendulums with close resonating frequencies are used to generate power over a broad range of frequencies.

21 citations

Journal ArticleDOI
TL;DR: In this paper, a low power controller based on the method of Ott, Grebogi, and Yorke (OGY) is used to stabilize the unstable high energy periodic orbits.

21 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the snap-through characteristics of a special class of hybrid bistable symmetric laminate (HBSL) subjected to different loading constraints and imperfections.

19 citations


Cited by
More filters
Journal ArticleDOI
18 Apr 2018-Joule
TL;DR: A comprehensive review of piezoelectric energy-harvesting techniques developed in the last decade is presented, identifying four promising applications: shoes, pacemakers, tire pressure monitoring systems, and bridge and building monitoring.

720 citations

Journal ArticleDOI
TL;DR: In this article, the authors highlight the role of nonlinearities in the transduction of energy harvesters under different types of excitations and investigate the conditions, in terms of excitation nature and potential shape, under which such non-linearities can be beneficial for energy harvesting.
Abstract: The last two decades have witnessed several advances in microfabrication technologies and electronics, leading to the development of small, low-power devices for wireless sensing, data transmission, actuation, and medical implants. Unfortunately, the actual implementation of such devices in their respective environment has been hindered by the lack of scalable energy sources that are necessary to power and maintain them. Batteries, which remain the most commonly used power sources, have not kept pace with the demands of these devices, especially in terms of energy density. In light of this challenge, the concept of vibratory energy harvesting has flourished in recent years as a possible alternative to provide a continuous power supply. While linear vibratory energy harvesters have received the majority of the literature’s attention, a significant body of the current research activity is focused on the concept of purposeful inclusion of nonlinearities for broadband transduction. When compared to their linear resonant counterparts, nonlinear energy harvesters have a wider steady-state frequency bandwidth, leading to a common belief that they can be utilized to improve performance in ambient environments. Through a review of the open literature, this paper highlights the role of nonlinearities in the transduction of energy harvesters under different types of excitations and investigates the conditions, in terms of excitation nature and potential shape, under which such nonlinearities can be beneficial for energy harvesting. [DOI: 10.1115/1.4026278]

682 citations

01 Jan 2016
TL;DR: The stochastic processes and filtering theory is universally compatible with any devices to read and will help you to get the most less latency time to download any of the authors' books like this one.
Abstract: Thank you for reading stochastic processes and filtering theory. Maybe you have knowledge that, people have look numerous times for their favorite novels like this stochastic processes and filtering theory, but end up in harmful downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they are facing with some infectious bugs inside their computer. stochastic processes and filtering theory is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the stochastic processes and filtering theory is universally compatible with any devices to read.

646 citations