scispace - formally typeset
Search or ask a question
Author

Shaker A. Meguid

Bio: Shaker A. Meguid is an academic researcher from University of Toronto. The author has contributed to research in topics: Finite element method & Multiscale modeling. The author has an hindex of 40, co-authored 133 publications receiving 5510 citations. Previous affiliations of Shaker A. Meguid include University of Porto & Nanyang Technological University.


Papers
More filters
Journal ArticleDOI
TL;DR: The use of SMA-actuated structures in shape morphing wing designs reduces the weight penalty due to the actuation systems, because such SMAactuated structure carries aerodynamic loads as mentioned in this paper.

587 citations

Journal ArticleDOI
TL;DR: In this article, an analytic solution for the coupled large deflection of plates and shallow shells made of functionally graded materials (FGMs) under transverse mechanical loads and a temperature field is provided.

342 citations

Journal ArticleDOI
TL;DR: In this article, the buckling behavior of single-walled and multiwalled carbon nanotubes is studied under axial compression in order to examine the effects of the number of layers on the structural properties of the multi-walled carbon nano-graphs.
Abstract: Buckling behavior of single-walled and multiwalled carbon nanotubes is studied under axial compression in this work. Brenner's ``second generation'' empirical potential is used to describe the many-body short-range interatomic interactions for single-walled carbon nanotubes, while the Lennard Jones model for the van der Waals potential is added for multiwalled carbon nanotubes. Single-, two-, three-, and four-walled nanotubes are considered in the simulations in order to examine the effects of the number of layers on the structural properties of the multiwalled nanotubes. Results indicate that there exists an optimum diameter for single-walled nanotubes at which the buckling load reaches its maximum value. The buckling load increases rapidly with the increase of the diameter up to the optimum diameter. A further increment beyond this diameter results in a slow decline in buckling load until a steady value is reached. The effects of layers on the buckling load of multiwalled nanotubes are also examined.

302 citations

Journal ArticleDOI
TL;DR: In this article, the tensile debonding and shear properties of composite interfaces reinforced by two different homogeneously dispersed nanofillers, carbon nanotubes and alumina nanopowder, are investigated.

298 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of electron tunneling on the electrical conductivity of carbon nanotube (CNT) polymer nanocomposites was investigated using Monte Carlo simulations, where the tunneling resistance between CNTs was established based on the electron transport theory.
Abstract: In this paper, we examined the effect of electron tunneling upon the electrical conductivity of carbon nanotube (CNT) polymer nanocomposites. A CNT percolating network model was developed to account for the random distribution of the CNT network using Monte Carlo simulations, where the tunneling resistance between CNTs was established based on the electron transport theory. Our work shows several novel features that result from this tunneling resistance: (i) direct contact resistance is the result of one-dimensional electron ballistic tunneling between two adjacent CNTs, (ii) the nanoscale CNT-CNT contact resistance should be represented by the Landauer-Buttiker (L-B) formula, which accounts for both tunneling and direct contact resistances, and (iii) the difference in contact resistance between single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) can be modeled by the channel number in the L-B model. The model predictions reveal that the contact resistance due to electron tunneling effects in nanocomposites with dispersed SWCNTs plays a more dominant role than those with MWCNTs. These results compare favorably with existing experimental data and demonstrate that the proposed model can properly estimate the electrical conductivity of nanocomposites containing homogeneously dispersed percolating CNT network.

247 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: Shape memory alloys (SMAs) are a class of shape memory materials (SMMs) which have the ability to "memorise" or retain their previous form when subjected to certain stimulus such as thermomechanical or magnetic variations.

2,818 citations

Journal ArticleDOI
TL;DR: In this article, the authors present recent advancements in the development of flexible and stretchable strain sensors, including skin-mountable and wearable strain sensors for personalized health-monitoring, human motion detection, human-machine interfaces, soft robotics, and so forth.
Abstract: There is a growing demand for flexible and soft electronic devices. In particular, stretchable, skin-mountable, and wearable strain sensors are needed for several potential applications including personalized health-monitoring, human motion detection, human-machine interfaces, soft robotics, and so forth. This Feature Article presents recent advancements in the development of flexible and stretchable strain sensors. The article shows that highly stretchable strain sensors are successfully being developed by new mechanisms such as disconnection between overlapped nanomaterials, crack propagation in thin films, and tunneling effect, different from traditional strain sensing mechanisms. Strain sensing performances of recently reported strain sensors are comprehensively studied and discussed, showing that appropriate choice of composite structures as well as suitable interaction between functional nanomaterials and polymers are essential for the high performance strain sensing. Next, simulation results of piezoresistivity of stretchable strain sensors by computational models are reported. Finally, potential applications of flexible strain sensors are described. This survey reveals that flexible, skin-mountable, and wearable strain sensors have potential in diverse applications while several grand challenges have to be still overcome.

2,154 citations

Journal ArticleDOI
TL;DR: In this paper, the authors address the nature of these height fluctuations by means of straightforward atomistic Monte Carlo simulations based on a very accurate many-body interatomic potential for carbon and find that ripples spontaneously appear due to thermal fluctuations with a size distribution peaked around 70 \AA which is compatible with experimental findings (50-100 \AA) but not with the current understanding of flexible membranes.
Abstract: The stability of two-dimensional (2D) layers and membranes is subject of a long standing theoretical debate. According to the so called Mermin-Wagner theorem, long wavelength fluctuations destroy the long-range order for 2D crystals. Similarly, 2D membranes embedded in a 3D space have a tendency to be crumpled. These dangerous fluctuations can, however, be suppressed by anharmonic coupling between bending and stretching modes making that a two-dimensional membrane can exist but should present strong height fluctuations. The discovery of graphene, the first truly 2D crystal and the recent experimental observation of ripples in freely hanging graphene makes these issues especially important. Beside the academic interest, understanding the mechanisms of stability of graphene is crucial for understanding electronic transport in this material that is attracting so much interest for its unusual Dirac spectrum and electronic properties. Here we address the nature of these height fluctuations by means of straightforward atomistic Monte Carlo simulations based on a very accurate many-body interatomic potential for carbon. We find that ripples spontaneously appear due to thermal fluctuations with a size distribution peaked around 70 \AA which is compatible with experimental findings (50-100 \AA) but not with the current understanding of stability of flexible membranes. This unexpected result seems to be due to the multiplicity of chemical bonding in carbon.

1,367 citations

Journal ArticleDOI
TL;DR: In this article, the fundamental design principles of highly thermally conductive composites were discussed and the key factors influencing the thermal conductivity of polymers, such as chain structure, crystallinity, crystal form, orientation of polymer chains, and orientation of ordered domains in both thermoplastics and thermosets were addressed.

1,359 citations