scispace - formally typeset
Search or ask a question
Author

Shan Huang

Bio: Shan Huang is an academic researcher. The author has co-authored 1 publications.

Papers
More filters
Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper developed a DNA-binding protein identification method called KK-DBP, which fuses multiple PSSM features to improve prediction accuracy and achieved a prediction accuracy of 81.22%.
Abstract: DNA-binding protein (DBP) is a protein with a special DNA binding domain that is associated with many important molecular biological mechanisms. Rapid development of computational methods has made it possible to predict DBP on a large scale; however, existing methods do not fully integrate DBP-related features, resulting in rough prediction results. In this article, we develop a DNA-binding protein identification method called KK-DBP. To improve prediction accuracy, we propose a feature extraction method that fuses multiple PSSM features. The experimental results show a prediction accuracy on the independent test dataset PDB186 of 81.22%, which is the highest of all existing methods.

5 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work proposes a methodology named “DNAPred_Prot”, which uses various position and frequency-dependent features from protein sequences for efficient and effective prediction of DNA-binding proteins, and it can be predicted that the suggested methodology performs better than other extant methods.
Abstract: In the domain of genome annotation, the identification of DNA-binding protein is one of the crucial challenges. DNA is considered a blueprint for the cell. It contained all necessary information for building and maintaining the trait of an organism. It is DNA, which makes a living thing, a living thing. Protein interaction with DNA performs an essential role in regulating DNA functions such as DNA repair, transcription, and regulation. Identification of these proteins is a crucial task for understanding the regulation of genes. Several methods have been developed to identify the binding sites of DNA and protein depending upon the structures and sequences, but they were costly and time-consuming. Therefore, we propose a methodology named “DNAPred_Prot”, which uses various position and frequency-dependent features from protein sequences for efficient and effective prediction of DNA-binding proteins. Using testing techniques like 10-fold cross-validation and jackknife testing an accuracy of 94.95% and 95.11% was yielded, respectively. The results of SVM and ANN were also compared with those of a random forest classifier. The robustness of the proposed model was evaluated by using the independent dataset PDB186, and an accuracy of 91.47% was achieved by it. From these results, it can be predicted that the suggested methodology performs better than other extant methods for the identification of DNA-binding proteins.

5 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper developed a comprehensive computational model for plant specific DNA-binding proteins (DBPs) identification, where five shallow learning and six deep learning models were initially used for prediction, where shallow learning methods outperformed deep learning algorithms.
Abstract: DNA-binding proteins (DBPs) play crucial roles in numerous cellular processes including nucleotide recognition, transcriptional control and the regulation of gene expression. Majority of the existing computational techniques for identifying DBPs are mainly applicable to human and mouse datasets. Even though some models have been tested on Arabidopsis, they produce poor accuracy when applied to other plant species. Therefore, it is imperative to develop an effective computational model for predicting plant DBPs. In this study, we developed a comprehensive computational model for plant specific DBPs identification. Five shallow learning and six deep learning models were initially used for prediction, where shallow learning methods outperformed deep learning algorithms. In particular, support vector machine achieved highest repeated 5-fold cross-validation accuracy of 94.0% area under receiver operating characteristic curve (AUC-ROC) and 93.5% area under precision recall curve (AUC-PR). With an independent dataset, the developed approach secured 93.8% AUC-ROC and 94.6% AUC-PR. While compared with the state-of-art existing tools by using an independent dataset, the proposed model achieved much higher accuracy. Overall results suggest that the developed computational model is more efficient and reliable as compared to the existing models for the prediction of DBPs in plants. For the convenience of the majority of experimental scientists, the developed prediction server PlDBPred is publicly accessible at https://iasri-sg.icar.gov.in/pldbpred/.The source code is also provided at https://iasri-sg.icar.gov.in/pldbpred/source_code.php for prediction using a large-size dataset.

3 citations

Posted ContentDOI
21 Feb 2023-bioRxiv
TL;DR: In this article , the authors proposed a method to identify Tyrosine nitration (NT) modification by extracting comprehensive features from raw protein sequences using four different sequence encoders.
Abstract: Post-translational modifications (PTMs) either enhance a protein’s activity in various sub-cellular processes, or degrade their activity which leads towards failure of intracellular processes. Tyrosine nitration (NT) modification degrades protein’s activity that initiate and propagate various diseases including Neurodegenerative, Cardiovascular, Autoimmune diseases, and Carcinogenesis. Identification of NT modification support development of novel therapies and drug discoveries for associated diseases. Identification of NT modification in biochemical labs is expensive, time consuming, and error-prone. To supplement this process, several computational approaches have been proposed. However these approaches remain fail to precisely identify NT modification, due to the extraction of irrelevant, redundant and less discriminative features from protein sequences. The paper in hand presents NTpred framework competent in extracting comprehensive features from raw protein sequences using four different sequence encoders. To reap the benefits of different encoders, it generates four additional feature spaces by fusing different combinations of individual encodings. Furthermore, it eradicates irrelevant and redundant features from eight different feature spaces through a Recursive Feature Elimination process. Selected features of four individual encodings and four feature fusion vectors are used to train eight different Gradient Boosted Tree classifiers. The probability scores from the trained classifiers are utilized to generate a new probabilistic feature space, that is utilized to train a Logistic Regression classifier. On BD1 benchmark dataset, the proposed framework outperform existing best performing predictor in 5-fold cross validation and independent test evaluation with combined improvement of 13.7% in MCC and 20.1% in AUC. Similarly, on BD2 benchmark dataset, the proposed framework outperform existing best performing predictor with combined improvement of 5.3% in MCC and 1.0% in AUC.
Journal ArticleDOI
TL;DR: In this article , the authors presented the NTpred framework that is competent in extracting comprehensive features from raw protein sequences using four different sequence encoders and fusing different combinations of individual encodings.
Abstract: Post-translational modifications (PTMs) either enhance a protein's activity in various sub-cellular processes, or degrade their activity which leads toward failure of intracellular processes. Tyrosine nitration (NT) modification degrades protein's activity that initiates and propagates various diseases including neurodegenerative, cardiovascular, autoimmune diseases and carcinogenesis. Identification of NT modification supports development of novel therapies and drug discoveries for associated diseases. Identification of NT modification in biochemical labs is expensive, time consuming and error-prone. To supplement this process, several computational approaches have been proposed. However these approaches fail to precisely identify NT modification, due to the extraction of irrelevant, redundant and less discriminative features from protein sequences. This paper presents the NTpred framework that is competent in extracting comprehensive features from raw protein sequences using four different sequence encoders. To reap the benefits of different encoders, it generates four additional feature spaces by fusing different combinations of individual encodings. Furthermore, it eradicates irrelevant and redundant features from eight different feature spaces through a Recursive Feature Elimination process. Selected features of four individual encodings and four feature fusion vectors are used to train eight different Gradient Boosted Tree classifiers. The probability scores from the trained classifiers are utilized to generate a new probabilistic feature space, which is used to train a Logistic Regression classifier. On the BD1 benchmark dataset, the proposed framework outperforms the existing best-performing predictor in 5-fold cross validation and independent test evaluation with combined improvement of 13.7% in MCC and 20.1% in AUC. Similarly, on the BD2 benchmark dataset, the proposed framework outperforms the existing best-performing predictor with combined improvement of 5.3% in MCC and 1.0% in AUC. NTpred is publicly available for further experimentation and predictive use at: https://sds_genetic_analysis.opendfki.de/PredNTS/.
Journal ArticleDOI
TL;DR: In this paper , a new three-part sequence-order feature extraction (TPSO) strategy is developed to extract more discriminative information from protein sequences for predicting the DNA-binding proteins.
Abstract: Identification of the DNA-binding protein (DBP) helps dig out information embedded in the DNA-protein interaction, which is significant to understanding the mechanisms of DNA replication, transcription, and repair. Although existing computational methods for predicting the DBPs based on protein sequences have obtained great success, there is still room for improvement since the sequence-order information is not fully mined in these methods. In this study, a new three-part sequence-order feature extraction (called TPSO) strategy is developed to extract more discriminative information from protein sequences for predicting the DBPs. For each query protein, TPSO first divides its primary sequence features into N- and C-terminal fragments and then extracts the numerical pseudo features of three parts including the full sequence and these two fragments, respectively. Based on TPSO, a novel deep learning-based method, called TPSO-DBP, is proposed, which employs the sequence-based single-view features, the bidirectional long short-term memory (BiLSTM) and fully connected (FC) neural networks to learn the DBP prediction model. Empirical outcomes reveal that TPSO-DBP can achieve an accuracy of 87.01%, covering 85.30% of all DBPs, while achieving a Matthew's correlation coefficient value (0.741) that is significantly higher than most existing state-of-the-art DBP prediction methods. Detailed data analyses have indicated that the advantages of TPSO-DBP lie in the utilization of TPSO, which helps extract more concealed prominent patterns, and the deep neural network framework composed of BiLSTM and FC that learns the nonlinear relationships between input features and DBPs. The standalone package and web server of TPSO-DBP are freely available at https://jun-csbio.github.io/TPSO-DBP/.