scispace - formally typeset
Search or ask a question
Author

Shanan E. Peters

Bio: Shanan E. Peters is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Geology & Biodiversity. The author has an hindex of 36, co-authored 84 publications receiving 4160 citations. Previous affiliations of Shanan E. Peters include University of Chicago & University of Michigan.


Papers
More filters
Journal ArticleDOI
04 Jul 2008-Science
TL;DR: In this paper, a new data set of fossil occurrences representing 3.5 million specimens was presented, and it was shown that global and local diversity was less than twice as high in the Neogene as in the mid-Paleozoic.
Abstract: It has previously been thought that there was a steep Cretaceous and Cenozoic radiation of marine invertebrates. This pattern can be replicated with a new data set of fossil occurrences representing 3.5 million specimens, but only when older analytical protocols are used. Moreover, analyses that employ sampling standardization and more robust counting methods show a modest rise in diversity with no clear trend after the mid-Cretaceous. Globally, locally, and at both high and low latitudes, diversity was less than twice as high in the Neogene as in the mid-Paleozoic. The ratio of global to local richness has changed little, and a latitudinal diversity gradient was present in the early Paleozoic.

650 citations

Journal ArticleDOI
TL;DR: In this paper, a simple estimate of the amount of marine sedimentary rock available for sampling is used to estimate the number of formations in the stratigraphic Lexicon of the United States Geological Survey.
Abstract: Many features of global diversity compilations have proven robust to continued sampling and taxonomic revision. Inherent biases in the stratigraphic record may nevertheless substantially affect estimates of global taxonomic diversity. Here we focus on short-term (epoch-level) changes in apparent diversity. We use a simple estimate of the amount of marine sedimentary rock available for sampling: the number of formations in the stratigraphic Lexicon of the United States Geological Survey. We find this to be positively correlated with two independent estimates of rock availability: global outcrop area derived from the Paleogeographic Atlas Project (University of Chicago) database, and percent continental flooding. Epoch-to-epoch changes in the number of formations are positively correlated with changes in sampled Phanerozoic marine diversity at the genus level. We agree with previous workers in finding evidence of a diversity-area effect that is substantially weaker than the effect of the amount of ...

325 citations

Journal ArticleDOI
19 Apr 2012-Nature
TL;DR: New stratigraphic and geochemical data are used to show that early Palaeozoic marine sediments deposited approximately 540–480 Myr ago record both an expansion in the area of shallow epicontinental seas and anomalous patterns of chemical sedimentation that are indicative of increased oceanic alkalinity and enhanced chemical weathering of continental crust.
Abstract: Changes in ocean chemistry promoted during the formation of the Great Unconformity, a stratigraphic surface that separates continental basement rock from younger marine sedimentary deposits, are proposed as the cause of the Cambrian explosion of marine animals. The 'Great Unconformity' is a worldwide stratigraphic feature marking a divide between continental crystalline basement rock and younger shallow marine sedimentary deposits. Occasionally — in the Grand Canyon, for example — it is exposed on Earth's surface to dramatic effect. Geologists have been debating the origins and the global impact of the Great Unconformity ever since the term was coined in 1869. Shanan Peters and Robert Gaines now present a new analysis of stratigraphic and lithologic data from 830 locations in North America, together with petrologic and geochemical data. They find evidence that the formation of the Great Unconformity caused enhanced continental weathering and increased oceanic alkalinity and ionic strength in expanding shallow seas, which in turn triggered biomineralization and the Cambrian explosion of marine animals. The transition between the Proterozoic and Phanerozoic eons, beginning 542 million years (Myr) ago, is distinguished by the diversification of multicellular animals and by their acquisition of mineralized skeletons during the Cambrian period1. Considerable progress has been made in documenting and more precisely correlating biotic patterns in the Neoproterozoic–Cambrian fossil record with geochemical and physical environmental perturbations2,3,4,5, but the mechanisms responsible for those perturbations remain uncertain1,2. Here we use new stratigraphic and geochemical data to show that early Palaeozoic marine sediments deposited approximately 540–480 Myr ago record both an expansion in the area of shallow epicontinental seas and anomalous patterns of chemical sedimentation that are indicative of increased oceanic alkalinity and enhanced chemical weathering of continental crust. These geochemical conditions were caused by a protracted period of widespread continental denudation during the Neoproterozoic followed by extensive physical reworking of soil, regolith and basement rock during the first continental-scale marine transgression of the Phanerozoic. The resultant globally occurring stratigraphic surface, which in most regions separates continental crystalline basement rock from much younger Cambrian shallow marine sedimentary deposits, is known as the Great Unconformity6. Although Darwin and others have interpreted this widespread hiatus in sedimentation on the continents as a failure of the geologic record, this palaeogeomorphic surface represents a unique physical environmental boundary condition that affected seawater chemistry during a time of profound expansion of shallow marine habitats. Thus, the formation of the Great Unconformity may have been an environmental trigger for the evolution of biomineralization and the ‘Cambrian explosion’ of ecologic and taxonomic diversity following the Neoproterozoic emergence of animals.

263 citations

Journal ArticleDOI
TL;DR: This work compares the rates of expansion and truncation of preserved marine sedimentary basins to rates of origination and extinction among Phanerozoic marine animal genera and suggests that the processes responsible for producing variability in the sedimentary rock record, such as plate tectonics and sea-level change, may have been dominant and consistent macroevolutionary forces throughout the Phanrozoic.
Abstract: The causes of mass extinctions and the nature of taxonomic radiations are central questions in paleobiology. Several episodes of taxonomic turnover in the fossil record, particularly the major mass extinctions, are generally thought to transcend known biases in the geologic record and are widely interpreted as distinct macroevolutionary phenomena that require unique forcing mechanisms. Here, by using a previously undescribed compilation of the durations of sedimentary rock sequences, I compare the rates of expansion and truncation of preserved marine sedimentary basins to rates of origination and extinction among Phanerozoic marine animal genera. Many features of the highly variable record of taxonomic first and last occurrences in the marine animal fossil record, including the major mass extinctions, the frequency distribution of genus longevities, and short- and long-term patterns of genus diversity, can be predicted on the basis of the temporal continuity and quantity of preserved sedimentary rock. Although these results suggest that geologically mediated sampling biases have distorted macroevolutionary patterns in the fossil record, preservation biases alone cannot easily explain the extent to which the sedimentary record duplicates paleobiological patterns. Instead, these results suggest that the processes responsible for producing variability in the sedimentary rock record, such as plate tectonics and sea-level change, may have been dominant and consistent macroevolutionary forces throughout the Phanerozoic.

260 citations

Journal ArticleDOI
28 Mar 2002-Nature
TL;DR: A new compilation of the amount of exposed marine sedimentary rock is used to predict how the observed fossil record of extinction would appear if the time series of true extinction rates were in fact smooth, and supports the hypothesis that much of the observed short-term volatility in extinction rates is an artefact of variability in the stratigraphic record.
Abstract: The causes of mass extinctions and the nature of biological selectivity at extinction events are central questions in palaeobiology. It has long been recognized, however, that the amount of sedimentary rock available for sampling may bias perceptions of biodiversity and estimates of taxonomic rates of evolution. This problem has been particularly noted with respect to the principal mass extinctions. Here we use a new compilation of the amount of exposed marine sedimentary rock to predict how the observed fossil record of extinction would appear if the time series of true extinction rates were in fact smooth. Many features of the highly variable record of apparent extinction rates within marine animals can be predicted on the basis of temporal variation in the amount of exposed rock. Although this result is consistent with the possibility that a common geological cause determines both true extinction rates and the amount of exposed rock, it also supports the hypothesis that much of the observed short-term volatility in extinction rates is an artefact of variability in the stratigraphic record.

181 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
03 Mar 2011-Nature
TL;DR: Differences between fossil and modern data and the addition of recently available palaeontological information influence understanding of the current extinction crisis, and results confirm that current extinction rates are higher than would be expected from the fossil record.
Abstract: Palaeontologists characterize mass extinctions as times when the Earth loses more than three-quarters of its species in a geologically short interval, as has happened only five times in the past 540 million years or so. Biologists now suggest that a sixth mass extinction may be under way, given the known species losses over the past few centuries and millennia. Here we review how differences between fossil and modern data and the addition of recently available palaeontological information influence our understanding of the current extinction crisis. Our results confirm that current extinction rates are higher than would be expected from the fossil record, highlighting the need for effective conservation measures.

3,051 citations

Journal ArticleDOI
TL;DR: An extensive survey of the literature is conducted and a synthetic assessment of the degree to which variation in patterns is a consequence of characteristics of scale or taxon is provided.
Abstract: ▪ Abstract The latitudinal gradient of decreasing richness from tropical to extratropical areas is ecology's longest recognized pattern. Nonetheless, notable exceptions to the general pattern exist, and it is well recognized that patterns may be dependent on characteristics of spatial scale and taxonomic hierarchy. We conducted an extensive survey of the literature and provide a synthetic assessment of the degree to which variation in patterns (positive linear, negative linear, modal, or nonsignificant) is a consequence of characteristics of scale (extent or focus) or taxon. In addition, we considered latitudinal gradients with respect to generic and familial richness, as well as species evenness and diversity. We provide a classification of the over 30 hypotheses advanced to account for the latitudinal gradient, and we discuss seven hypotheses with most promise for advancing ecological, biogeographic, and evolutionary understanding. We conclude with a forward-looking synthesis and list of fertile areas f...

1,730 citations