Author
Shang-Hong Lai
Other affiliations: Siemens, Industrial Technology Research Institute, Novatek ...read more
Bio: Shang-Hong Lai is an academic researcher from National Tsing Hua University. The author has contributed to research in topics: Motion estimation & Facial recognition system. The author has an hindex of 32, co-authored 301 publications receiving 4649 citations. Previous affiliations of Shang-Hong Lai include Siemens & Industrial Technology Research Institute.
Papers published on a yearly basis
Papers
More filters
06 Nov 2011
TL;DR: Experimental results on two benchmark datasets demonstrate that the proposed model can simultaneously yield a saliency map of better quality and a more meaningful objectness output for salient object detection.
Abstract: We present a novel computational model to explore the relatedness of objectness and saliency, each of which plays an important role in the study of visual attention. The proposed framework conceptually integrates these two concepts via constructing a graphical model to account for their relationships, and concurrently improves their estimation by iteratively optimizing a novel energy function realizing the model. Specifically, the energy function comprises the objectness, the saliency, and the interaction energy, respectively corresponding to explain their individual regularities and the mutual effects. Minimizing the energy by fixing one or the other would elegantly transform the model into solving the problem of objectness or saliency estimation, while the useful information from the other concept can be utilized through the interaction term. Experimental results on two benchmark datasets demonstrate that the proposed model can simultaneously yield a saliency map of better quality and a more meaningful objectness output for salient object detection.
384 citations
20 Jun 2011
TL;DR: This work addresses two key issues of co-segmentation over multiple images by establishing an MRF optimization model that has an energy function with nice properties and can be shown to effectively resolve the two difficulties.
Abstract: We address two key issues of co-segmentation over multiple images. The first is whether a pure unsupervised algorithm can satisfactorily solve this problem. Without the user's guidance, segmenting the foregrounds implied by the common object is quite a challenging task, especially when substantial variations in the object's appearance, shape, and scale are allowed. The second issue concerns the efficiency if the technique can lead to practical uses. With these in mind, we establish an MRF optimization model that has an energy function with nice properties and can be shown to effectively resolve the two difficulties. Specifically, instead of relying on the user inputs, our approach introduces a co-saliency prior as the hint about possible foreground locations, and uses it to construct the MRF data terms. To complete the optimization framework, we include a novel global term that is more appropriate to co-segmentation, and results in a submodular energy function. The proposed model can thus be optimally solved by graph cuts. We demonstrate these advantages by testing our method on several benchmark datasets.
221 citations
08 Sep 2018
TL;DR: This work purpose a structure-aware image-to-image translation network, which is composed of encoders, generators, discriminators and parsing nets for the two domains, respectively, in a unified framework and generates more visually plausible images compared to competing methods on different image-translation tasks.
Abstract: Deep learning based image-to-image translation methods aim at learning the joint distribution of the two domains and finding transformations between them. Despite recent GAN (Generative Adversarial Network) based methods have shown compelling results, they are prone to fail at preserving image-objects and maintaining translation consistency, which reduces their practicality on tasks such as generating large-scale training data for different domains. To address this problem, we purpose a structure-aware image-to-image translation network, which is composed of encoders, generators, discriminators and parsing nets for the two domains, respectively, in a unified framework. The purposed network generates more visually plausible images compared to competing methods on different image-translation tasks. In addition, we quantitatively evaluate different methods by training Faster-RCNN and YOLO with datasets generated from the image-translation results and demonstrate significant improvement on the detection accuracies by using the proposed image-object preserving network.
197 citations
TL;DR: The proposed vertebra detection and segmentation system is proved to be robust and accurate so that it can be used for advanced research and application on spinal MR images.
Abstract: Automatic extraction of vertebra regions from a spinal magnetic resonance (MR) image is normally required as the first step to an intelligent spinal MR image diagnosis system. In this work, we develop a fully automatic vertebra detection and segmentation system, which consists of three stages; namely, AdaBoost-based vertebra detection, detection refinement via robust curve fitting, and vertebra segmentation by an iterative normalized cut algorithm. In order to produce an efficient and effective vertebra detector, a statistical learning approach based on an improved AdaBoost algorithm is proposed. A robust estimation procedure is applied on the detected vertebra locations to fit a spine curve, thus refining the above vertebra detection results. This refinement process involves removing the false detections and recovering the miss-detected vertebrae. Finally, an iterative normalized-cut segmentation algorithm is proposed to segment the precise vertebra regions from the detected vertebra locations. In our implementation, the proposed AdaBoost-based detector is trained from 22 spinal MR volume images. The experimental results show that the proposed vertebra detection and segmentation system can achieve nearly 98% vertebra detection rate and 96% segmentation accuracy on a variety of testing spinal MR images. Our experiments also show the vertebra detection and segmentation accuracies by using the proposed algorithm are superior to those of the previous representative methods. The proposed vertebra detection and segmentation system is proved to be robust and accurate so that it can be used for advanced research and application on spinal MR images.
171 citations
TL;DR: A fast pattern matching algorithm based on the normalized cross correlation (NCC) criterion by combining adaptive multilevel partition with the winner update scheme to achieve very efficient search.
Abstract: In this paper, we propose a fast pattern matching algorithm based on the normalized cross correlation (NCC) criterion by combining adaptive multilevel partition with the winner update scheme to achieve very efficient search. This winner update scheme is applied in conjunction with an upper bound for the cross correlation derived from Cauchy-Schwarz inequality. To apply the winner update scheme in an efficient way, we partition the summation of cross correlation into different levels with the partition order determined by the gradient energies of the partitioned regions in the template. Thus, this winner update scheme in conjunction with the upper bound for NCC can be employed to skip unnecessary calculation. Experimental results show the proposed algorithm is very efficient for image matching under different lighting conditions.
158 citations
Cited by
More filters
[...]
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).
13,246 citations
Book•
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.
4,146 citations
Journal Article•
3,940 citations
01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher:
The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.
3,627 citations
11 May 2004
TL;DR: By proving that this scheme implements a coarse-to-fine warping strategy, this work gives a theoretical foundation for warping which has been used on a mainly experimental basis so far and demonstrates its excellent robustness under noise.
Abstract: We study an energy functional for computing optical flow that combines three assumptions: a brightness constancy assumption, a gradient constancy assumption, and a discontinuity-preserving spatio-temporal smoothness constraint. In order to allow for large displacements, linearisations in the two data terms are strictly avoided. We present a consistent numerical scheme based on two nested fixed point iterations. By proving that this scheme implements a coarse-to-fine warping strategy, we give a theoretical foundation for warping which has been used on a mainly experimental basis so far. Our evaluation demonstrates that the novel method gives significantly smaller angular errors than previous techniques for optical flow estimation. We show that it is fairly insensitive to parameter variations, and we demonstrate its excellent robustness under noise.
2,902 citations