scispace - formally typeset
Search or ask a question
Author

Shaofang Nie

Other affiliations: Chinese Ministry of Education
Bio: Shaofang Nie is an academic researcher from Huazhong University of Science and Technology. The author has contributed to research in topics: Stochastic programming & Single-nucleotide polymorphism. The author has an hindex of 18, co-authored 35 publications receiving 1516 citations. Previous affiliations of Shaofang Nie include Chinese Ministry of Education.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an interval-parameter multi-stage stochastic linear programming (IMSLP) method has been developed for water resources decision making under uncertainty, where penalties are exercised with recourse against any infeasibility, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised water allocation targets are violated.

261 citations

Journal ArticleDOI
TL;DR: Data demonstrate that Treg cells serve to protect against adverse ventricular remodeling and contribute to improve cardiac function after myocardial infarction via inhibition of inflammation and direct protection of cardiomyocytes.
Abstract: Persistent inflammatory responses participate in the pathogenesis of adverse ventricular remodeling after myocardial infarction (MI). We hypothesized that regulatory T (Treg) cells modulate inflammatory responses, attenuate ventricular remodeling and subsequently improve cardiac function after MI. Acute MI was induced by ligation of the left anterior descending coronary artery in rats. Infiltration of Foxp3(+) Treg cells was detected in the infarcted heart. Expansion of Treg cells in vivo by means of adoptive transfer as well as a CD28 superagonistic antibody (JJ316) resulted in an increased number of Foxp3(+) Treg cells in the infarcted heart. Subsequently, rats with MI showed improved cardiac function following Treg cells transfer or JJ316 injection. Interstitial fibrosis, myocardial matrix metalloproteinase-2 activity and cardiac apoptosis were attenuated in the rats that received Treg cells transfer. Infiltration of neutrophils, macrophages and lymphocytes as well as expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β were also significantly decreased, and the CD8(+) cardiac-specific cytotoxic T lymphocyte response was inhibited. Expression of interleukin (IL)-10 in the heart, however, was increased. Additional studies in vitro indicated that Treg cells directly protect neonatal rat cardiomyocytes against LPS-induced apoptosis, and this protection depends on the cell-cell contact and IL-10 expression. Furthermore, Treg cells inhibited proinflammatory cytokines production by cardiomyocytes. These data demonstrate that Treg cells serve to protect against adverse ventricular remodeling and contribute to improve cardiac function after myocardial infarction via inhibition of inflammation and direct protection of cardiomyocytes.

245 citations

Journal ArticleDOI
TL;DR: In this article, an inexact two-stage chance-constrained linear programming (ITCLP) method is developed for planning waste management systems, which can tackle uncertainties presented as both probability distributions and discrete intervals.
Abstract: An inexact two-stage chance-constrained linear programming (ITCLP) method is developed for planning waste management systems. The model is derived by incorporating the techniques of two-stage and chance-constrained programming within a general interval-optimization framework. It can tackle uncertainties presented as both probability distributions and discrete intervals. Moreover, it can be used for analyzing various policy scenarios that are associated with different levels of economic penalties when the promised policy targets are violated. It can also help examine the reliability of satisfying (or risk of violating) system constraints under uncertainty. The developed method is applied to a case of long-term waste management planning. Interval solutions associated different risk levels of constraint violation are obtained. They can be used for generating decision alternatives and thus help waste managers to identify desired policies under various environmental, economic, and system-reliability constraints.

119 citations

Journal ArticleDOI
TL;DR: The inexact multistage stochastic integer programming (IMSIP) method can help water resources managers to identify desired system designs against water shortage and for flood control with maximized economic benefit and minimized system- failure risk.

115 citations

Journal ArticleDOI
TL;DR: An interval-fuzzy multistage programming (IFMP) method is developed for water resources management under uncertainty by allowing uncertainties presented as discrete intervals, fuzzy sets, and probability distributions to be effectively incorporated within its optimization framework.
Abstract: An interval-fuzzy multistage programming (IFMP) method is developed for water resources management under uncertainty. This method improves upon the existing multistage stochastic programming methods by allowing uncertainties presented as discrete intervals, fuzzy sets, and probability distributions to be effectively incorporated within its optimization framework. The IFMP method can adequately reflect dynamic variations of system conditions, particularly for large-scale multistage problems with sequential structures. The uncertain information can be incorporated within a multi-layer scenario tree; revised decisions are permitted in each time period based on the realized values of the uncertain events. Moreover, this method can be used for analyzing various policy scenarios that are associated with different levels of economic consequences when the promised water-allocation targets are violated. A case study of water resources management is then provided for demonstrating applicability of the developed method. For all scenarios under consideration, corrective actions are allowed to be taken dynamically in reference to the pre-regulated policies and the realized uncertainties. The results can help quantify the relationships among system benefit, satisfaction degree, and constraint-violation risk. Thus, desired decision alternatives can be generated under different conditions of supply-demand dynamics.

93 citations


Cited by
More filters
01 Jan 2014
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care.
Abstract: XI. STRATEGIES FOR IMPROVING DIABETES CARE D iabetes is a chronic illness that requires continuing medical care and patient self-management education to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude more extensive evaluation and management of the patient by other specialists as needed. For more detailed information, refer to Bode (Ed.): Medical Management of Type 1 Diabetes (1), Burant (Ed): Medical Management of Type 2 Diabetes (2), and Klingensmith (Ed): Intensive Diabetes Management (3). The recommendations included are diagnostic and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E.

9,618 citations

Journal ArticleDOI
19 May 2011-Nature
TL;DR: Understanding how to combine experimental and clinical science will provide further insight into atherosclerosis and could lead to new clinical applications.
Abstract: Atherosclerosis is a chronic disease of the arterial wall, and a leading cause of death and loss of productive life years worldwide. Research into the disease has led to many compelling hypotheses about the pathophysiology of atherosclerotic lesion formation and of complications such as myocardial infarction and stroke. Yet, despite these advances, we still lack definitive evidence to show that processes such as lipoprotein oxidation, inflammation and immunity have a crucial involvement in human atherosclerosis. Experimental atherosclerosis in animals furnishes an important research tool, but extrapolation to humans requires care. Understanding how to combine experimental and clinical science will provide further insight into atherosclerosis and could lead to new clinical applications.

3,214 citations

BookDOI
01 Jan 2011
TL;DR: Firm evidence is provided for Foxp3+CD25+CD4+ Treg cells as an indispensable cellular constituent of the normal immune system for establishing and maintaining immunologic self-tolerance and immune homeostasis.
Abstract: Despite the skepticism that once prevailed among immunologists, it is now widely accepted that the normal immune system harbors a T-cell population, called regulatory T cells (Treg cells), specialized for immune suppression. It was first shown that depletion of a T-cell subpopulation from normal rodents produced autoimmune disease. Search for a molecular marker specific for such autoimmune-preventive Treg cells has revealed that the majority, if not all, of them constitutively express the CD25 molecule as depletion of CD25+CD4+ T cells spontaneously evokes autoimmune disease in otherwise normal rodents. The expression of CD25 by Treg cells has made it possible to delineate their developmental pathways, in particular their thymic development, and establish simple in vitro assay for assessing their suppressive activity. The marker and the in vitro assay have helped to identify human Treg cells with similar functional and phenotypic characteristics. Recent efforts have shown that natural Treg cells specifically express the transcription factor Foxp3 and that mutations of the Foxp3 gene produce a variety of immunological diseases in humans and rodents. Specific expression of Foxp3 in natural Treg cells has enabled their functional and developmental characterization by genetic approach. These studies altogether have provided firm evidence for Foxp3+CD25+CD4+ Treg cells as an indispensable cellular constituent of the normal immune system for establishing and maintaining immunologic self-tolerance and immune homeostasis. Treg cells are now within the scope of clinical use to treat immunological diseases and control physiological and pathological immune responses.

1,745 citations

Journal ArticleDOI
TL;DR: Both experimental and clinical evidence suggests that cardiac fibrotic alterations may be reversible, and understanding the mechanisms responsible for initiation, progression, and resolution of cardiac fibrosis is crucial to design anti-fibrotic treatment strategies for patients with heart disease.
Abstract: Cardiac fibrosis is characterized by net accumulation of extracellular matrix proteins in the cardiac interstitium, and contributes to both systolic and diastolic dysfunction in many cardiac pathophysiologic conditions. This review discusses the cellular effectors and molecular pathways implicated in the pathogenesis of cardiac fibrosis. Although activated myofibroblasts are the main effector cells in the fibrotic heart, monocytes/macrophages, lymphocytes, mast cells, vascular cells and cardiomyocytes may also contribute to the fibrotic response by secreting key fibrogenic mediators. Inflammatory cytokines and chemokines, reactive oxygen species, mast cell-derived proteases, endothelin-1, the renin/angiotensin/aldosterone system, matricellular proteins, and growth factors (such as TGF-β and PDGF) are some of the best-studied mediators implicated in cardiac fibrosis. Both experimental and clinical evidence suggests that cardiac fibrotic alterations may be reversible. Understanding the mechanisms responsible for initiation, progression, and resolution of cardiac fibrosis is crucial to design anti-fibrotic treatment strategies for patients with heart disease.

1,092 citations