scispace - formally typeset
Search or ask a question
Author

Shaojie Shen

Bio: Shaojie Shen is an academic researcher from Hong Kong University of Science and Technology. The author has contributed to research in topics: Computer science & Inertial measurement unit. The author has an hindex of 38, co-authored 175 publications receiving 6542 citations. Previous affiliations of Shaojie Shen include University of Pennsylvania & Carnegie Mellon University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a robust and versatile monocular visual-inertial state estimator is presented, which is the minimum sensor suite (in size, weight, and power) for the metric six degrees of freedom (DOF) state estimation.
Abstract: One camera and one low-cost inertial measurement unit (IMU) form a monocular visual-inertial system (VINS), which is the minimum sensor suite (in size, weight, and power) for the metric six degrees-of-freedom (DOF) state estimation. In this paper, we present VINS-Mono: a robust and versatile monocular visual-inertial state estimator. Our approach starts with a robust procedure for estimator initialization. A tightly coupled, nonlinear optimization-based method is used to obtain highly accurate visual-inertial odometry by fusing preintegrated IMU measurements and feature observations. A loop detection module, in combination with our tightly coupled formulation, enables relocalization with minimum computation. We additionally perform 4-DOF pose graph optimization to enforce the global consistency. Furthermore, the proposed system can reuse a map by saving and loading it in an efficient way. The current and previous maps can be merged together by the global pose graph optimization. We validate the performance of our system on public datasets and real-world experiments and compare against other state-of-the-art algorithms. We also perform an onboard closed-loop autonomous flight on the microaerial-vehicle platform and port the algorithm to an iOS-based demonstration. We highlight that the proposed work is a reliable, complete, and versatile system that is applicable for different applications that require high accuracy in localization. We open source our implementations for both PCs ( https://github.com/HKUST-Aerial-Robotics/VINS-Mono ) and iOS mobile devices ( https://github.com/HKUST-Aerial-Robotics/VINS-Mobile ).

2,305 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: Stereo R-CNN as mentioned in this paper proposes a 3D object detection method for autonomous driving by fully exploiting the sparse and dense, semantic and geometry information in stereo imagery, which adds extra branches after stereo Region Proposal Network (RPN) to predict sparse keypoints, viewpoints and object dimensions, which are combined with 2D left-right boxes to calculate a coarse 3D bounding box.
Abstract: We propose a 3D object detection method for autonomous driving by fully exploiting the sparse and dense, semantic and geometry information in stereo imagery. Our method, called Stereo R-CNN, extends Faster R-CNN for stereo inputs to simultaneously detect and associate object in left and right images. We add extra branches after stereo Region Proposal Network (RPN) to predict sparse keypoints, viewpoints, and object dimensions, which are combined with 2D left-right boxes to calculate a coarse 3D object bounding box. We then recover the accurate 3D bounding box by a region-based photometric alignment using left and right RoIs. Our method does not require depth input and 3D position supervision, however, outperforms all existing fully supervised image-based methods. Experiments on the challenging KITTI dataset show that our method outperforms the state-of-the-art stereo-based method by around 30% AP on both 3D detection and 3D localization tasks. Code will be made publicly available.

504 citations

Proceedings ArticleDOI
09 May 2011
TL;DR: This paper addresses multi-floor mapping with loop closure, localization, planning, and autonomous control, including adaptation to aerodynamic effects during traversal through spaces with low vertical clearance or strong external disturbances.
Abstract: In this paper, we consider the problem of autonomous navigation with a micro aerial vehicle (MAV) in indoor environments. In particular, we are interested in autonomous navigation in buildings with multiple floors. To ensure that the robot is fully autonomous, we require all computation to occur on the robot without need for external infrastructure, communication, or human interaction beyond high-level commands. Therefore, we pursue a system design and methodology that enables autonomous navigation with real-time performance on a mobile processor using only onboard sensors. Specifically, we address multi-floor mapping with loop closure, localization, planning, and autonomous control, including adaptation to aerodynamic effects during traversal through spaces with low vertical clearance or strong external disturbances. We present experimental results with ground truth comparisons and performance analysis.

406 citations

Journal ArticleDOI
TL;DR: The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping, and dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing.
Abstract: The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas.

333 citations

Journal ArticleDOI
TL;DR: Results from field experiments conducted with a team of ground and aerial robots engaged in the collaborative mapping of an earthquake-damaged building that was damaged during the 2011 Tohoku earthquake are reported.
Abstract: We report recent results from field experiments conducted with a team of ground and aerial robots engaged in the collaborative mapping of an earthquake-damaged building. The goal of the experimental exercise is the generation of three-dimensional maps that capture the layout of a multifloor environment. The experiments took place in the top three floors of a structurally compromised building at Tohoku University in Sendai, Japan that was damaged during the 2011 Tohoku earthquake. We provide details of the approach to the collaborative mapping and report results from the experiments in the form of maps generated by the individual robots and as a team. We conclude by discussing observations from the experiments and future research topics. © 2012 Wiley Periodicals, Inc. (This work builds upon the conference paper (Michael et al., 2012).)

331 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a robust and versatile monocular visual-inertial state estimator is presented, which is the minimum sensor suite (in size, weight, and power) for the metric six degrees of freedom (DOF) state estimation.
Abstract: One camera and one low-cost inertial measurement unit (IMU) form a monocular visual-inertial system (VINS), which is the minimum sensor suite (in size, weight, and power) for the metric six degrees-of-freedom (DOF) state estimation. In this paper, we present VINS-Mono: a robust and versatile monocular visual-inertial state estimator. Our approach starts with a robust procedure for estimator initialization. A tightly coupled, nonlinear optimization-based method is used to obtain highly accurate visual-inertial odometry by fusing preintegrated IMU measurements and feature observations. A loop detection module, in combination with our tightly coupled formulation, enables relocalization with minimum computation. We additionally perform 4-DOF pose graph optimization to enforce the global consistency. Furthermore, the proposed system can reuse a map by saving and loading it in an efficient way. The current and previous maps can be merged together by the global pose graph optimization. We validate the performance of our system on public datasets and real-world experiments and compare against other state-of-the-art algorithms. We also perform an onboard closed-loop autonomous flight on the microaerial-vehicle platform and port the algorithm to an iOS-based demonstration. We highlight that the proposed work is a reliable, complete, and versatile system that is applicable for different applications that require high accuracy in localization. We open source our implementations for both PCs ( https://github.com/HKUST-Aerial-Robotics/VINS-Mono ) and iOS mobile devices ( https://github.com/HKUST-Aerial-Robotics/VINS-Mobile ).

2,305 citations

Posted Content
TL;DR: This paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies which are adaptive, distributed, asynchronous, and verifiably correct.
Abstract: This paper presents control and coordination algorithms for groups of vehicles. The focus is on autonomous vehicle networks performing distributed sensing tasks where each vehicle plays the role of a mobile tunable sensor. The paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies. The resulting closed-loop behavior is adaptive, distributed, asynchronous, and verifiably correct.

2,198 citations

Proceedings ArticleDOI
12 Jul 2014
TL;DR: The method achieves both low-drift and low-computational complexity without the need for high accuracy ranging or inertial measurements and can achieve accuracy at the level of state of the art offline batch methods.
Abstract: We propose a real-time method for odometry and mapping using range measurements from a 2-axis lidar moving in 6-DOF. The problem is hard because the range measurements are received at different times, and errors in motion estimation can cause mis-registration of the resulting point cloud. To date, coherent 3D maps can be built by off-line batch methods, often using loop closure to correct for drift over time. Our method achieves both low-drift and low-computational complexity without the need for high accuracy ranging or inertial measurements. The key idea in obtaining this level of performance is the division of the complex problem of simultaneous localization and mapping, which seeks to optimize a large number of variables simultaneously, by two algorithms. One algorithm performs odometry at a high frequency but low fidelity to estimate velocity of the lidar. Another algorithm runs at a frequency of an order of magnitude lower for fine matching and registration of the point cloud. Combination of the two algorithms allows the method to map in real-time. The method has been evaluated by a large set of experiments as well as on the KITTI odometry benchmark. The results indicate that the method can achieve accuracy at the level of state of the art offline batch methods.

1,879 citations