scispace - formally typeset
Search or ask a question
Author

Shaojie Tang

Bio: Shaojie Tang is an academic researcher from University of Texas at Dallas. The author has contributed to research in topics: Wireless sensor network & Wireless network. The author has an hindex of 41, co-authored 318 publications receiving 6895 citations. Previous affiliations of Shaojie Tang include Temple University & Illinois Institute of Technology.


Papers
More filters
Proceedings ArticleDOI
08 Jul 2014
TL;DR: FCC, a device-Free Crowd Counting approach based on Channel State Information (CSI), is presented and a metric, the Percentage of nonzero Elements (PEM) in the dilated CSI Matrix is proposed, which can be explicitly formulated by the Grey Verhulst Model.
Abstract: Crowd counting, which count or accurately estimate the number of human beings within a region, is critical in many applications, such as guided tour and crowd control. A crowd counting solution should be scalable and be minimally intrusive (i.e., device-free) to users. Image-based solutions are device-free, but cannot work well in a dim or dark environment. Non-image based solutions usually require every human being carrying device, and are inaccurate and unreliable in practice. In this paper, we present FCC, a device-Free Crowd Counting approach based on Channel State Information (CSI). Our design is motivated by our observation that CSI is highly sensitive to environment variation, like a frog eye. We theoretically discuss the relationship between the number of moving people and the variation of wireless channel state. A major challenge in our design of FCC is to find a stable monotonic function to characterize the relationship between the crowd number and various features of CSI. To this end, we propose a metric, the Percentage of nonzero Elements (PEM), in the dilated CSI Matrix. The monotonic relationship can be explicitly formulated by the Grey Verhulst Model, which is used for crowd counting without a labor-intensive site survey. We implement FCC using off-theshelf IEEE 802.11n devices and evaluate its performance via extensive experiments in typical real-world scenarios. Our results demonstrate that FCC outperforms the state-of-art approaches with much better accuracy, scalability and reliability.

376 citations

Proceedings ArticleDOI
04 Nov 2009
TL;DR: GreenOrbs is presented, a wireless sensor network system and its application for canopy closure estimates that outperforms the conventional approaches for canopyclosure estimates by incorporating a pre-deployment training process as well as a distributed calibration method.
Abstract: Motivated by the needs of precise forest inventory and real-time surveillance for ecosystem management, in this paper we present GreenOrbs [2], a wireless sensor network system and its application for canopy closure estimates. Both the hardware and software designs of GreenOrbs are tailored for sensing in wild environments without human supervision, including a firm weatherproof enclosure of sensor motes and a light-weight mechanism for node state monitoring and data collection. By incorporating a pre-deployment training process as well as a distributed calibration method, the estimates of canopy closure stay accurate and consistent against uncertain sensory data and dynamic environments. We have implemented a prototype system of GreenOrbs and carried out multiple rounds of deployments. The evaluation results demonstrate that GreenOrbs outperforms the conventional approaches for canopy closure estimates. Some early experiences are reported in this paper.

352 citations

Proceedings ArticleDOI
01 Dec 2014
TL;DR: It is shown that with off-the-shelf WiFi devices, fine-grained sleep information like a person's respiration, sleeping postures and rollovers can be successfully extracted.
Abstract: Is it possible to leverage WiFi signals collected in bedrooms to monitor a person's sleep? In this paper, we show that with off-the-shelf WiFi devices, fine-grained sleep information like a person's respiration, sleeping postures and rollovers can be successfully extracted. We do this by introducing Wi-Sleep, the first sleep monitoring system based on WiFi signals. Wi-Sleep adopts off-the-shelf WiFi devices to continuously collect the fine-grained wireless channel state information (CSI) around a person. From the CSI, Wi-Sleep extracts rhythmic patterns associated with respiration and abrupt changes due to the body movement. Compared to existing sleep monitoring systems that usually require special devices attached to human body (i.e. Probes, head belt, and wrist band), Wi-Sleep is completely contact less. In addition, different from many vision-based sleep monitoring systems, Wi-Sleep is robust to low-light environments and does not raise privacy concerns. Preliminary testing results show that the Wi-Sleep can reliably track a person's respiration and sleeping postures in different conditions.

278 citations

Journal ArticleDOI
TL;DR: An efficient distributed algorithm is proposed that produces a collision-free schedule for data aggregation in WSNs and it is theoretically proved that the delay of the aggregation schedule generated by the algorithm is at most 16R + Δ - 14 time slots.
Abstract: Data aggregation is a key functionality in wireless sensor networks (WSNs). This paper focuses on data aggregation scheduling problem to minimize the delay (or latency). We propose an efficient distributed algorithm that produces a collision-free schedule for data aggregation in WSNs. We theoretically prove that the delay of the aggregation schedule generated by our algorithm is at most 16R + Δ - 14 time slots. Here, R is the network radius and Δ is the maximum node degree in the communication graph of the original network. Our algorithm significantly improves the previously known best data aggregation algorithm with an upper bound of delay of 24D + 6Δ + 16 time slots, where D is the network diameter (note that D can be as large as 2R). We conduct extensive simulations to study the practical performances of our proposed data aggregation algorithm. Our simulation results corroborate our theoretical results and show that our algorithms perform better in practice. We prove that the overall lower bound of delay for data aggregation under any interference model is max{log n,R}, where n is the network size. We provide an example to show that the lower bound is (approximately) tight under the protocol interference model when rI = r, where rI is the interference range and r is the transmission range. We also derive the lower bound of delay under the protocol interference model when r <; rI <; 3r and rI ≥ 3r.

224 citations

Journal ArticleDOI
TL;DR: This paper presents an energy-efficient opportunistic routing strategy, denoted as EEOR, and extensive simulations in TOSSIM show that the protocol EEOR performs better than the well-known ExOR protocol in terms of the energy consumption, the packet loss ratio, and the average delivery delay.
Abstract: Opportunistic routing, has been shown to improve the network throughput, by allowing nodes that overhear the transmission and closer to the destination to participate in forwarding packets, i.e., in forwarder list. The nodes in forwarder list are prioritized and the lower priority forwarder will discard the packet if the packet has been forwarded by a higher priority forwarder. One challenging problem is to select and prioritize forwarder list such that a certain network performance is optimized. In this paper, we focus on selecting and prioritizing forwarder list to minimize energy consumption by all nodes. We study both cases where the transmission power of each node is fixed or dynamically adjustable. We present an energy-efficient opportunistic routing strategy, denoted as EEOR. Our extensive simulations in TOSSIM show that our protocol EEOR performs better than the well-known ExOR protocol (when adapted in sensor networks) in terms of the energy consumption, the packet loss ratio, and the average delivery delay.

216 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2002

9,314 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management is provided in this paper, where a set of issues, challenges, and future research directions for MEC are discussed.
Abstract: Driven by the visions of Internet of Things and 5G communications, recent years have seen a paradigm shift in mobile computing, from the centralized mobile cloud computing toward mobile edge computing (MEC). The main feature of MEC is to push mobile computing, network control and storage to the network edges (e.g., base stations and access points) so as to enable computation-intensive and latency-critical applications at the resource-limited mobile devices. MEC promises dramatic reduction in latency and mobile energy consumption, tackling the key challenges for materializing 5G vision. The promised gains of MEC have motivated extensive efforts in both academia and industry on developing the technology. A main thrust of MEC research is to seamlessly merge the two disciplines of wireless communications and mobile computing, resulting in a wide-range of new designs ranging from techniques for computation offloading to network architectures. This paper provides a comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management. We also discuss a set of issues, challenges, and future research directions for MEC research, including MEC system deployment, cache-enabled MEC, mobility management for MEC, green MEC, as well as privacy-aware MEC. Advancements in these directions will facilitate the transformation of MEC from theory to practice. Finally, we introduce recent standardization efforts on MEC as well as some typical MEC application scenarios.

2,992 citations