scispace - formally typeset
Search or ask a question
Author

Shaojie Zhuo

Bio: Shaojie Zhuo is an academic researcher from Qualcomm. The author has contributed to research in topics: Image restoration & Iterative reconstruction. The author has an hindex of 18, co-authored 23 publications receiving 1462 citations. Previous affiliations of Shaojie Zhuo include National University of Singapore.

Papers
More filters
Patent
Chen Feng1, Xiaopeng Zhang1, Shaojie Zhuo1, Liang Shen1, Tao Sheng1, Alwyn Dos Remedios1 
15 Jul 2014
TL;DR: In this article, the authors proposed a method for generating high resolution iris templates and detecting spoofs, enabling more reliable and secure iris authentication using RGB and NIR images.
Abstract: Certain aspects relate to systems and techniques for generating high resolution iris templates and for detecting spoofs, enabling more reliable and secure iris authentication. Pairs of RGB and NIR images can be captured by the iris authentication system for use in iris authentication, for example using an NIR LED flash and a four-channel image sensor. Multiple images of the user's iris can be captured by the system in a relatively short period of time and can be fused together to generate a high resolution iris image that can contain more detail of the iris structure and unique pattern than each individual images. The “liveness” of the iris, referring to whether the iris is a real human iris or an iris imitation, can be assessed via a liveness ratio based on comparison of known iris and sclera reflectance properties at various wavelengths to determined sensor responses at those same wavelengths.

90 citations

Proceedings ArticleDOI
13 Jun 2010
TL;DR: A novel method to recover a sharp image from a pair of motion blurred and flash images, consecutively captured using a hand-held camera is proposed, leading to an accurate blur kernel and a reconstructed image with fine image details.
Abstract: Motion blur due to camera shake is an annoying yet common problem in low-light photography. In this paper, we propose a novel method to recover a sharp image from a pair of motion blurred and flash images, consecutively captured using a hand-held camera. We first introduce a robust flash gradient constraint by exploiting the correlation between a sharp image and its corresponding flash image. Then we formulate our flash deblurring as solving a maximum-a-posteriori problem under the flash gradient constraint. We solve the problem by performing kernel estimation and non-blind deconvolution iteratively, leading to an accurate blur kernel and a reconstructed image with fine image details. Experiments on both synthetic and real images show the superiority of our method compared with existing methods.

86 citations

Proceedings ArticleDOI
13 Jun 2010
TL;DR: This paper introduces a method to correct over-exposure in an existing photograph by recovering the color and lightness separately, which is fully automatic and requires only one single input photo.
Abstract: This paper introduces a method to correct over-exposure in an existing photograph by recovering the color and lightness separately. First, the dynamic range of well exposed region is slightly compressed to make room for the recovered lightness of the over-exposed region. Then the lightness is recovered based on an over-exposure likelihood. The color of each pixel is corrected via neighborhood propagation and also based on the confidence of the original color. Previous methods make use of ratios between different color channels to recover the over-exposed ones, and thus can not handle regions where all three channels are over-exposed. In contrast, our method does not have this limitation. Our method is fully automatic and requires only one single input photo. We also provide users with the flexibility to control the amount of over-exposure correction. Experiment results demonstrate the effectiveness of the proposed method in correcting over-exposure.

81 citations

Proceedings ArticleDOI
03 Dec 2010
TL;DR: A new method to denoise an visible image and enhance its details using its corresponding NIR flash image is introduced, which shows the superiority of this method compared with previous image denoising and detail enhancement methods.
Abstract: In low light environment, photographs taken with a high ISO setting suffer from significant noise. In this paper, we propose to use a near infrared (NIR) flash image, instead of a normal visible flash image, to enhance its corresponding noisy visible image. We build a hybrid camera system to take an visible image and its NIR counterpart simultaneously. We introduce a new method to denoise an visible image and enhance its details using its corresponding NIR flash image. Experimental results show the superiority of our method compared with previous image denoising and detail enhancement methods.

78 citations

Proceedings ArticleDOI
Tao Sheng1, Chen Feng1, Shaojie Zhuo1, Xiaopeng Zhang1, Liang Shen1, Mickey Aleksic1 
TL;DR: This work analyzed the root cause of quantization loss and proposed a quantization-friendly separable convolution architecture that can archive 8-bit inference top-1 accuracy and almost closed the gap to the float pipeline.
Abstract: As deep learning (DL) is being rapidly pushed to edge computing, researchers invented various ways to make inference computation more efficient on mobile/IoT devices, such as network pruning, parameter compression, and etc. Quantization, as one of the key approaches, can effectively offload GPU, and make it possible to deploy DL on fixed-point pipeline. Unfortunately, not all existing networks design are friendly to quantization. For example, the popular lightweight MobileNetV1, while it successfully reduces parameter size and computation latency with separable convolution, our experiment shows its quantized models have large accuracy gap against its float point models. To resolve this, we analyzed the root cause of quantization loss and proposed a quantization-friendly separable convolution architecture. By evaluating the image classification task on ImageNet2012 dataset, our modified MobileNetV1 model can archive 8-bit inference top-1 accuracy in 68.03%, almost closed the gap to the float pipeline.

66 citations


Cited by
More filters
Proceedings ArticleDOI
20 Jun 2011
TL;DR: This work proposes a regional contrast based saliency extraction algorithm, which simultaneously evaluates global contrast differences and spatial coherence, and consistently outperformed existing saliency detection methods.
Abstract: Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.

3,653 citations

Book ChapterDOI
08 Oct 2016
TL;DR: This paper proposes a fully automatic approach to colorization that produces vibrant and realistic colorizations and shows that colorization can be a powerful pretext task for self-supervised feature learning, acting as a cross-channel encoder.
Abstract: Given a grayscale photograph as input, this paper attacks the problem of hallucinating a plausible color version of the photograph. This problem is clearly underconstrained, so previous approaches have either relied on significant user interaction or resulted in desaturated colorizations. We propose a fully automatic approach that produces vibrant and realistic colorizations. We embrace the underlying uncertainty of the problem by posing it as a classification task and use class-rebalancing at training time to increase the diversity of colors in the result. The system is implemented as a feed-forward pass in a CNN at test time and is trained on over a million color images. We evaluate our algorithm using a “colorization Turing test,” asking human participants to choose between a generated and ground truth color image. Our method successfully fools humans on 32 % of the trials, significantly higher than previous methods. Moreover, we show that colorization can be a powerful pretext task for self-supervised feature learning, acting as a cross-channel encoder. This approach results in state-of-the-art performance on several feature learning benchmarks.

2,326 citations

Posted Content
TL;DR: In this article, the problem of hallucinating a plausible color version of the photograph is addressed by posing it as a classification task and using class-balancing at training time to increase the diversity of colors in the result.
Abstract: Given a grayscale photograph as input, this paper attacks the problem of hallucinating a plausible color version of the photograph. This problem is clearly underconstrained, so previous approaches have either relied on significant user interaction or resulted in desaturated colorizations. We propose a fully automatic approach that produces vibrant and realistic colorizations. We embrace the underlying uncertainty of the problem by posing it as a classification task and use class-rebalancing at training time to increase the diversity of colors in the result. The system is implemented as a feed-forward pass in a CNN at test time and is trained on over a million color images. We evaluate our algorithm using a "colorization Turing test," asking human participants to choose between a generated and ground truth color image. Our method successfully fools humans on 32% of the trials, significantly higher than previous methods. Moreover, we show that colorization can be a powerful pretext task for self-supervised feature learning, acting as a cross-channel encoder. This approach results in state-of-the-art performance on several feature learning benchmarks.

2,087 citations

Journal ArticleDOI
TL;DR: It is found that the models designed specifically for salient object detection generally work better than models in closely related areas, which provides a precise definition and suggests an appropriate treatment of this problem that distinguishes it from other problems.
Abstract: We extensively compare, qualitatively and quantitatively, 41 state-of-the-art models (29 salient object detection, 10 fixation prediction, 1 objectness, and 1 baseline) over seven challenging data sets for the purpose of benchmarking salient object detection and segmentation methods. From the results obtained so far, our evaluation shows a consistent rapid progress over the last few years in terms of both accuracy and running time. The top contenders in this benchmark significantly outperform the models identified as the best in the previous benchmark conducted three years ago. We find that the models designed specifically for salient object detection generally work better than models in closely related areas, which in turn provides a precise definition and suggests an appropriate treatment of this problem that distinguishes it from other problems. In particular, we analyze the influences of center bias and scene complexity in model performance, which, along with the hard cases for the state-of-the-art models, provide useful hints toward constructing more challenging large-scale data sets and better saliency models. Finally, we propose probable solutions for tackling several open problems, such as evaluation scores and data set bias, which also suggest future research directions in the rapidly growing field of salient object detection.

1,372 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: It is observed that generic objects with well-defined closed boundary can be discriminated by looking at the norm of gradients, with a suitable resizing of their corresponding image windows in to a small fixed size, so as to train a generic objectness measure.
Abstract: Training a generic objectness measure to produce a small set of candidate object windows, has been shown to speed up the classical sliding window object detection paradigm. We observe that generic objects with well-defined closed boundary can be discriminated by looking at the norm of gradients, with a suitable resizing of their corresponding image windows in to a small fixed size. Based on this observation and computational reasons, we propose to resize the window to 8 × 8 and use the norm of the gradients as a simple 64D feature to describe it, for explicitly training a generic objectness measure. We further show how the binarized version of this feature, namely binarized normed gradients (BING), can be used for efficient objectness estimation, which requires only a few atomic operations (e.g. ADD, BITWISE SHIFT, etc.). Experiments on the challenging PASCAL VOC 2007 dataset show that our method efficiently (300fps on a single laptop CPU) generates a small set of category-independent, high quality object windows, yielding 96.2% object detection rate (DR) with 1, 000 proposals. Increasing the numbers of proposals and color spaces for computing BING features, our performance can be further improved to 99.5% DR.

1,034 citations