scispace - formally typeset
Search or ask a question
Author

Shaoyan Sun

Bio: Shaoyan Sun is an academic researcher from University of Science and Technology of China. The author has contributed to research in topics: Image retrieval & Convolutional neural network. The author has an hindex of 8, co-authored 16 publications receiving 514 citations.

Papers
More filters
Proceedings ArticleDOI
21 Jul 2017
TL;DR: A new dataset, PRW, is introduced to evaluate Person Re-identification in the Wild, and it is shown that pedestrian detection aids re-ID through two simple yet effective improvements: a cascaded fine-tuning strategy that trains a detection model first and then the classification model, and a Confidence Weighted Similarity (CWS) metric that incorporates detection scores into similarity measurement.
Abstract: This paper presents a novel large-scale dataset and comprehensive baselines for end-to-end pedestrian detection and person recognition in raw video frames. Our baselines address three issues: the performance of various combinations of detectors and recognizers, mechanisms for pedestrian detection to help improve overall re-identification (re-ID) accuracy and assessing the effectiveness of different detectors for re-ID. We make three distinct contributions. First, a new dataset, PRW, is introduced to evaluate Person Re-identification in the Wild, using videos acquired through six synchronized cameras. It contains 932 identities and 11,816 frames in which pedestrians are annotated with their bounding box positions and identities. Extensive benchmarking results are presented on this dataset. Second, we show that pedestrian detection aids re-ID through two simple yet effective improvements: a cascaded fine-tuning strategy that trains a detection model first and then the classification model, and a Confidence Weighted Similarity (CWS) metric that incorporates detection scores into similarity measurement. Third, we derive insights in evaluating detector performance for the particular scenario of accurate person re-ID.

548 citations

Journal ArticleDOI
TL;DR: A compact representation for scalable object retrieval from few generic object regions is proposed with a fusion of learning-based features and aggregated SIFT features and is evaluated on two public ground-truth datasets with promising results.
Abstract: In content-based visual object retrieval, image representation is one of the fundamental issues in improving retrieval performance. Existing works adopt either local SIFT-like features or holistic features, and may suffer sensitivity to noise or poor discrimination power. In this article, we propose a compact representation for scalable object retrieval from few generic object regions. The regions are identified with a general object detector and are described with a fusion of learning-based features and aggregated SIFT features. Further, we compress feature representation in large-scale image retrieval scenarios. We evaluate the performance of the proposed method on two public ground-truth datasets, with promising results. Experimental results on a million-scale image database demonstrate superior retrieval accuracy with efficiency gain in both computation and memory usage.

39 citations

Posted Content
TL;DR: In this article, a large-scale dataset, Person Re-ID-discriminative Embedding (IDE) in the person subspace using convolutional neural network (CNN) features and a Confidence Weighted Similarity (CWS) metric that incorporates detection scores into similarity measurement is presented.
Abstract: We present a novel large-scale dataset and comprehensive baselines for end-to-end pedestrian detection and person recognition in raw video frames. Our baselines address three issues: the performance of various combinations of detectors and recognizers, mechanisms for pedestrian detection to help improve overall re-identification accuracy and assessing the effectiveness of different detectors for re-identification. We make three distinct contributions. First, a new dataset, PRW, is introduced to evaluate Person Re-identification in the Wild, using videos acquired through six synchronized cameras. It contains 932 identities and 11,816 frames in which pedestrians are annotated with their bounding box positions and identities. Extensive benchmarking results are presented on this dataset. Second, we show that pedestrian detection aids re-identification through two simple yet effective improvements: a discriminatively trained ID-discriminative Embedding (IDE) in the person subspace using convolutional neural network (CNN) features and a Confidence Weighted Similarity (CWS) metric that incorporates detection scores into similarity measurement. Third, we derive insights in evaluating detector performance for the particular scenario of accurate person re-identification.

33 citations

Book ChapterDOI
08 Oct 2016
TL;DR: A new algorithm called Smooth Neighborhood (SN) is proposed that mines the neighborhood structure to satisfy the manifold assumption and is adjusted to tackle multiple affinity graphs by imposing a weight learning paradigm.
Abstract: Due to the ability of capturing geometry structures of the data manifold, diffusion process has demonstrated impressive performances in retrieval task by spreading the similarities on the affinity graph. In view of robustness to noise edges, diffusion process is usually localized, i.e., only propagating similarities via neighbors. However, selecting neighbors smoothly on graph-based manifolds is more or less ignored by previous works. In this paper, we propose a new algorithm called Smooth Neighborhood (SN) that mines the neighborhood structure to satisfy the manifold assumption. By doing so, nearby points on the underlying manifold are guaranteed to yield similar neighbors as much as possible. Moreover, SN is adjusted to tackle multiple affinity graphs by imposing a weight learning paradigm, and this is the primary difference compared with related works which are only applicable with one affinity graph. Exhausted experimental results and comparisons against other algorithms manifest the effectiveness of the proposed algorithm.

31 citations

Posted Content
TL;DR: This paper proposes randomly transforming feature maps of CNNs during the training stage to prevent complex dependencies of specific rotation, scale, and translation levels of training images in CNN models and shows that random transformation provides significant improvements ofCNNs on many benchmark tasks, including small-scaleimage recognition, large-scale image recognition, and image retrieval.
Abstract: Convolutional neural networks (CNNs) have achieved state-of-the-art results on many visual recognition tasks. However, current CNN models still exhibit a poor ability to be invariant to spatial transformations of images. Intuitively, with sufficient layers and parameters, hierarchical combinations of convolution (matrix multiplication and non-linear activation) and pooling operations should be able to learn a robust mapping from transformed input images to transform-invariant representations. In this paper, we propose randomly transforming (rotation, scale, and translation) feature maps of CNNs during the training stage. This prevents complex dependencies of specific rotation, scale, and translation levels of training images in CNN models. Rather, each convolutional kernel learns to detect a feature that is generally helpful for producing the transform-invariant answer given the combinatorially large variety of transform levels of its input feature maps. In this way, we do not require any extra training supervision or modification to the optimization process and training images. We show that random transformation provides significant improvements of CNNs on many benchmark tasks, including small-scale image recognition, large-scale image recognition, and image retrieval. The code is available at this https URL.

28 citations


Cited by
More filters
Proceedings ArticleDOI
26 Jan 2017
TL;DR: A simple semisupervised pipeline that only uses the original training set without collecting extra data, which effectively improves the discriminative ability of learned CNN embeddings and proposes the label smoothing regularization for outliers (LSRO).
Abstract: The main contribution of this paper is a simple semisupervised pipeline that only uses the original training set without collecting extra data. It is challenging in 1) how to obtain more training data only from the training set and 2) how to use the newly generated data. In this work, the generative adversarial network (GAN) is used to generate unlabeled samples. We propose the label smoothing regularization for outliers (LSRO). This method assigns a uniform label distribution to the unlabeled images, which regularizes the supervised model and improves the baseline. We verify the proposed method on a practical problem: person re-identification (re-ID). This task aims to retrieve a query person from other cameras. We adopt the deep convolutional generative adversarial network (DCGAN) for sample generation, and a baseline convolutional neural network (CNN) for representation learning. Experiments show that adding the GAN-generated data effectively improves the discriminative ability of learned CNN embeddings. On three large-scale datasets, Market- 1501, CUHK03 and DukeMTMC-reID, we obtain +4.37%, +1.6% and +2.46% improvement in rank-1 precision over the baseline CNN, respectively. We additionally apply the proposed method to fine-grained bird recognition and achieve a +0.6% improvement over a strong baseline. The code is available at https://github.com/layumi/ Person-reID_GAN.

1,789 citations

Journal ArticleDOI
TL;DR: The state-of-the-art in deep learning algorithms in computer vision is reviewed by highlighting the contributions and challenges from over 210 recent research papers, and the future trends and challenges in designing and training deep neural networks are summarized.
Abstract: Deep learning algorithms are a subset of the machine learning algorithms, which aim at discovering multiple levels of distributed representations. Recently, numerous deep learning algorithms have been proposed to solve traditional artificial intelligence problems. This work aims to review the state-of-the-art in deep learning algorithms in computer vision by highlighting the contributions and challenges from over 210 recent research papers. It first gives an overview of various deep learning approaches and their recent developments, and then briefly describes their applications in diverse vision tasks, such as image classification, object detection, image retrieval, semantic segmentation and human pose estimation. Finally, the paper summarizes the future trends and challenges in designing and training deep neural networks.

1,733 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: This paper proposes a k-reciprocal encoding method to re-rank the re-ID results, and hypothesis is that if a gallery image is similar to the probe in the k- Reciprocal nearest neighbors, it is more likely to be a true match.
Abstract: When considering person re-identification (re-ID) as a retrieval process, re-ranking is a critical step to improve its accuracy. Yet in the re-ID community, limited effort has been devoted to re-ranking, especially those fully automatic, unsupervised solutions. In this paper, we propose a k-reciprocal encoding method to re-rank the re-ID results. Our hypothesis is that if a gallery image is similar to the probe in the k-reciprocal nearest neighbors, it is more likely to be a true match. Specifically, given an image, a k-reciprocal feature is calculated by encoding its k-reciprocal nearest neighbors into a single vector, which is used for re-ranking under the Jaccard distance. The final distance is computed as the combination of the original distance and the Jaccard distance. Our re-ranking method does not require any human interaction or any labeled data, so it is applicable to large-scale datasets. Experiments on the large-scale Market-1501, CUHK03, MARS, and PRW datasets confirm the effectiveness of our method.

1,306 citations

Posted Content
TL;DR: The history of person re-identification and its relationship with image classification and instance retrieval is introduced and two new re-ID tasks which are much closer to real-world applications are described and discussed.
Abstract: Person re-identification (re-ID) has become increasingly popular in the community due to its application and research significance. It aims at spotting a person of interest in other cameras. In the early days, hand-crafted algorithms and small-scale evaluation were predominantly reported. Recent years have witnessed the emergence of large-scale datasets and deep learning systems which make use of large data volumes. Considering different tasks, we classify most current re-ID methods into two classes, i.e., image-based and video-based; in both tasks, hand-crafted and deep learning systems will be reviewed. Moreover, two new re-ID tasks which are much closer to real-world applications are described and discussed, i.e., end-to-end re-ID and fast re-ID in very large galleries. This paper: 1) introduces the history of person re-ID and its relationship with image classification and instance retrieval; 2) surveys a broad selection of the hand-crafted systems and the large-scale methods in both image- and video-based re-ID; 3) describes critical future directions in end-to-end re-ID and fast retrieval in large galleries; and 4) finally briefs some important yet under-developed issues.

984 citations

Proceedings ArticleDOI
01 Jul 2017
TL;DR: A new deep learning framework for person search that jointly handles pedestrian detection and person re-identification in a single convolutional neural network and converges much faster and better than the conventional Softmax loss.
Abstract: Existing person re-identification benchmarks and methods mainly focus on matching cropped pedestrian images between queries and candidates. However, it is different from real-world scenarios where the annotations of pedestrian bounding boxes are unavailable and the target person needs to be searched from a gallery of whole scene images. To close the gap, we propose a new deep learning framework for person search. Instead of breaking it down into two separate tasks—pedestrian detection and person re-identification, we jointly handle both aspects in a single convolutional neural network. An Online Instance Matching (OIM) loss function is proposed to train the network effectively, which is scalable to datasets with numerous identities. To validate our approach, we collect and annotate a large-scale benchmark dataset for person search. It contains 18,184 images, 8,432 identities, and 96,143 pedestrian bounding boxes. Experiments show that our framework outperforms other separate approaches, and the proposed OIM loss function converges much faster and better than the conventional Softmax loss.

757 citations