scispace - formally typeset
Search or ask a question
Author

Shaoyang Dong

Bio: Shaoyang Dong is an academic researcher. The author has contributed to research in topics: Heart failure & Cardiotoxicity. The author has an hindex of 2, co-authored 2 publications receiving 31 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The relevant mechanisms of the miR-30 in VR induced by various diseases will be reviewed, including autophagy, apoptosis, oxidative stress, and inflammation.
Abstract: Ventricular remodeling (VR) is a complex pathological process of cardiomyocyte apoptosis, cardiac hypertrophy, and myocardial fibrosis, which is often caused by various cardiovascular diseases (CVDs) such as hypertension, acute myocardial infarction, heart failure (HF), etc. It is also an independent risk factor for a variety of CVDs, which will eventually to damage the heart function, promote cardiovascular events, and lead to an increase in mortality. MicroRNAs (miRNAs) can participate in a variety of CVDs through post-transcriptional regulation of target gene proteins. Among them, microRNA-30 (miR-30) is one of the most abundant miRNAs in the heart. In recent years, the study found that the miR-30 family can participate in VR through a variety of mechanisms, including autophagy, apoptosis, oxidative stress, and inflammation. VR is commonly found in ischemic heart disease (IHD), hypertensive heart disease (HHD), diabetic cardiomyopathy (DCM), antineoplastic drug cardiotoxicity (CTX), and other CVDs. Therefore, we will review the relevant mechanisms of the miR-30 in VR induced by various diseases.

43 citations

Journal ArticleDOI
TL;DR: The mechanism of action of OS in cardiacoxicity of antineoplastic drugs is reviewed to provide new ideas for researchers, and provide further guidance for clinical prevention and treatment of cardiac toxicity of anti-tumor drugs in the future.

15 citations


Cited by
More filters
12 Sep 2017
TL;DR: This review will focus mainly on the recent advances in the molecular mechanisms of cardiotoxicity related to common cancer therapies while introducing the concept of cardio-oncology service.
Abstract: Current oncologic treatments have brought a strong reduction in mortality in cancer patients. However, the cancer therapy-related cardiovascular complications, in particular chemo-therapy and radiation therapy-induced cardiotoxicities are a major cause of morbidity and mortality in people living with or surviving cancer. The simple fact is that all antineoplastic agents and radiation therapy target tumor cells but also result in collateral damage to other tissues including the cardiovascular system. The commonly used anthracycline chemotherapy agents can induce cardiomyopathy and congestive heart failure. Targeted therapies with human epidermal growth factor antibodies, tyrosine kinase inhibitors or vascular endothelial growth factor antibodies, and the antimetabolites also have shown to induce cardiomyopathy and myocardial ischemia. Cardiac arrhythmias and hypertension have been well described with the use of tyrosine kinase inhibitors and antimicrotubule agents. Pericarditis can happen with the use of cyclophosphamide or cytarabine. Mediastinal radiation can cause constrictive pericarditis, myocardial fibrosis, valvular lesions, and coronary artery disease. Despite significant progresses in the understanding of the molecular and pathophysiologic mechanisms behind the cardiovascular toxicity of cancer therapy, there is still lack of evidence-based approach for the monitoring and management of patients. This review will focus mainly on the recent advances in the molecular mechanisms of cardiotoxicity related to common cancer therapies while introducing the concept of cardio-oncology service. Applying the general principles of multi-disciplinary approaches toward the diagnosis, prevention, monitoring, and treatment of cancer therapy-induced cardiomyopathy and heart failure will also be discussed.

76 citations

Journal ArticleDOI
TL;DR: In a genetic hypertension model, chronic cardiac pressure overload promptly leads to increased myocardial glucose uptake and oxidation, and to metabolite abnormalities, which coincide with, or precede, cardiac dysfunction while left ventricular hypertrophy develops only later.
Abstract: Background Sustained pressure overload leads to changes in cardiac metabolism, function, and structure. Both time course and causal relationships between these changes are not fully understood. Therefore, we studied spontaneously hypertensive rats (SHR) during early hypertension development and compared them to control Wistar Kyoto rats.

48 citations

Journal ArticleDOI
TL;DR: Novel evidence interconnecting cardiac dysfunction and cancer via pathways in which cardiomyocytes may be involved, but are not central is discussed, and the multiple roles of cardiac stromal cells (endothelial cells, fibroblasts) and inflammatory cells are highlighted.
Abstract: In western countries, cardiovascular (CV) disease and cancer are the leading causes of death in the ageing population. Recent epidemiological data suggest that cancer is more frequent in patients with prevalent or incident CV disease, in particular, heart failure (HF). Indeed, there is a tight link in terms of shared risk factors and mechanisms between HF and cancer. HF induced by anticancer therapies has been extensively studied, primarily focusing on the toxic effects that anti-tumour treatments exert on cardiomyocytes. In this Cardio-Oncology update, members of the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart discuss novel evidence interconnecting cardiac dysfunction and cancer via pathways in which cardiomyocytes may be involved but are not central. In particular, the multiple roles of cardiac stromal cells (endothelial cells and fibroblasts) and inflammatory cells are highlighted. Also, the gut microbiota is depicted as a new player at the crossroads between HF and cancer. Finally, the role of non-coding RNAs in Cardio-Oncology is also addressed. All these insights are expected to fuel additional research efforts in the field of Cardio-Oncology.

41 citations

Journal ArticleDOI
TL;DR: In conclusion, inhibition of miR-103 restrained end-stage of autophagy by regulating BNIP3, thus changing the occurrence of cell pyroptosis.
Abstract: Endothelial cell damage caused by oxidative stress is widely considered to be a triggering event in atherosclerosis (AS). However, the specific effect elicited by autophagy in endothelial cells undergoing oxidative stress remains controversial, especially during end-stage autophagy. The inhibition of end-stage autophagy has been reported to increase cell pyroptosis and contribute to endothelial damage. Several studies have shown that microRNA-103 is involved in end-stage autophagy; however, its specific mechanism of action is not yet characterized. In this study, we addressed the regulatory role of miR-103 in autophagy during oxidative stress of endothelial cells. Hydrogen peroxide (H2O2) treatment was used as an in vitro model of oxidative stress. MTS and ROS levels were measured to evaluate cell activity. qRT-PCR was used to detect the expression of miR-103. Autophagy was examined using western blot, immunofluorescence staining, and electron microscopy, while western blot analysis detected pyroptosis-related proteins. Results show that miR-103 expression decreased under oxidative stress. Further, miR-103 repressed transcription of Bcl-2/adenovirus E1B 19 kDa interacting protein (BNIP3). The oxidative stress caused by H2O2 caused cell damage from 2 hours (P < 0.05) and increased the level of intracellular reactive oxygen species (P < 0.05); at the same time, the damage could be further aggravated by the stimulation of bafA1 (P < 0.05). Under the stimulation of H2O2, the expression of miR-103 decreased (P < 0.05). However, high expression of miR-103 could reduce the accumulation of LC3II and P62 (P < 0.05) by inhibiting the downstream target gene Bcl-2/adenovirus E1B 19 kDa interacting protein (BNIP3), thus reducing the occurrence of cell pyroptosis (P < 0.05). This process could be blocked by end-stage autophagy inhibitor bafA1 (P < 0.05), which further indicated that miR-103 affected cell injury by autophagy. On the contrary, the low expression of miR-103 promoted the accumulation of autophagy protein and increased the occurrence of pyroptosis (P < 0.05). In conclusion, inhibition of miR-103 restrained end-stage of autophagy by regulating BNIP3, thus changing the occurrence of cell pyroptosis.

30 citations

Journal ArticleDOI
TL;DR: In this article, a review of emerging markers related to oxidative stress, evaluating their possible use as therapeutic targets: galectin-3, a β galactoside associated with myocardial fibrosis, α1-antitrypsin, an antiprotease and lectin-like oxidized low-density-lipoprotein receptor-1, the major receptor for ox-LDL.
Abstract: Heart failure (HF) is considered one of the most common diseases and one of the major causes of death. The latest studies show that HF is associated with an increase in oxidative stress. The use of antioxidants as therapy is effective in animal models, but not in humans. In this review, we analyse some emerging markers related to oxidative stress, evaluating their possible use as therapeutic targets: galectin-3, a β galactoside associated with myocardial fibrosis, α1-antitrypsin, an antiprotease and lectin-like oxidized low-density-lipoprotein receptor-1, the major receptor for ox-LDL. The up-regulation of galectin-3 appears to be associated with HF, atrial fibrillation, dilated cardiomyopathy, fibrogenesis and mortality, while in other cases it seems that galectin-3 may be protective in ischaemia-reperfusion injury. Serum α1-antitrypsin protein levels may increase in the presence of high concentrations of serum proteases, which are over expressed during reperfusion. The overexpression of α1-antitrypsin or the exogenous α1-antitrypsin treatment exhibits an anti-oxidative stress role, evaluated by increased eNOS expression and by decreased MMP9 expression, implicated in HF. The cardiac lectin-like oxidized low-density-lipoprotein receptor-1 is activated by oxidative stress in ischaemia-reperfusion injury, inducing apoptosis in cardiomyocytes through the deleterious NF-kB pathway, while the administration of anti-lectin-like oxidized low-density-lipoprotein receptor-1 antibody suppresses apoptosis and reduces the extent of myocardial infarction. In conclusion, α1-antitrypsin and lectin-like oxidized low-density-lipoprotein receptor-1 seem to represent two good markers in HF and therapeutic targets, whereas galectin-3 does not.

27 citations