scispace - formally typeset
Search or ask a question
Author

Sharada Rai

Bio: Sharada Rai is an academic researcher from Manipal University. The author has contributed to research in topics: Bone marrow & Burn injury. The author has an hindex of 4, co-authored 12 publications receiving 72 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that a single exposure of 3-J/cm2 fluence at 830-nm enhanced burn wound healing progression in mice, which is equivalent to 5 % povidone iodine treatment (reference standard), applied on a daily basis till complete healing.
Abstract: The present work reports the photo-biomodulatory effect of red (632.8 nm) and near infrared (785 and 830 nm) lasers on burn injury in Swiss albino mice. Animals were induced with a 15-mm full thickness burn injury and irradiated with various fluences (1, 2, 3, 4, and 6 J/cm2) of each laser wavelength under study having a constant fluence rate (8.49 mW/cm2). The size of the injury following treatment was monitored by capturing the wound images at regular time intervals until complete healing. Morphometric assessment indicated that the group treated with 3-J/cm2 fluence of 830 nm had a profound effect on healing as compared to untreated controls and various fluences of other wavelengths under study. Histopathological assessment of wound repair on treatment with an optimum fluence (3 J/cm2) of 830 nm performed on days 2, 6, 12, and 18 post-wounding resulted in enhanced wound repair with migration of fibroblasts, deposition of collagen, and neovascularization as compared to untreated controls. The findings of the present study have clearly demonstrated that a single exposure of 3-J/cm2 fluence at 830-nm enhanced burn wound healing progression in mice, which is equivalent to 5 % povidone iodine treatment (reference standard), applied on a daily basis till complete healing.

32 citations

Journal ArticleDOI
TL;DR: Criteria of TPS limit the AUC category and enhance the sensitivity and accuracy of detecting HGUC, and adopt TPS for urinary cytology will ensure uniformity and accuracies of HGUC diagnosis.
Abstract: Introduction: Urine cytology is an important screening tool of patients for urothelial carcinoma (UC) and follow-up of patients with treated disease. Ease of procurement, cost-effectiveness, and lower turnaround time are the major advantages. Objective: To compare current system of reporting (CSR) at our institute with The Paris System (TPS) and analyze utility of urine cytology based on TPS reporting in correlation with urine culture and histopathology. Materials and Methods: One-year retrospective study of 90 cases was undertaken wherein cases presenting with painless hematuria and clinically suspicious of UC were included. Urine cytology slides were reviewed and reported with TPS guidelines. These findings were correlated with histopathological diagnosis and urine culture as indicated. Statistical analysis was done using SPSS 17 software. Results: With TPS guidelines, 11.1% and 5.6% cases were reported as high-grade UC (HGUC) and low-grade urothelial neoplasm (LGUN), respectively. Suspicious for HGUC category included 17.8% of cases. The rate of reporting “atypical urothelial cells (AUC)” was significantly lower (11.1%) with TPS on comparison with CSR (16.7%). Histopathological correlation of positive predictive value for HGUC was better (100%) on using TPS when compared with CSR (64.3%). Among 11 cases with microbial growth on urine culture, 9.1% were reported as atypical. Sensitivity and accuracy of TPS in detecting UC were 83.3% and 86.52%, respectively. Both were higher when compared with CSR. Conclusion: In comparison to CSR, criteria of TPS limit the AUC category and enhance the sensitivity and accuracy of detecting HGUC. Adopting TPS for urinary cytology will ensure uniformity and accuracy of HGUC diagnosis.

28 citations

Journal ArticleDOI
TL;DR: An optimal dose of PS is indicated, which could be used for surface modification for targeted drug delivery applications with least toxicity, in view of further surface engineering for its clinical applications.
Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) are evolving as a mainstay across various applications in the field of Science and Technology. SPIONs have enticed attention on the grounds of their unique physicochemical properties as well as potential applications in magnetic hyperthermia, immunoassays, as a contrast agent in magnetic resonance imaging and targeted drug delivery among others. Toward this goal, we synthesized SPIONs by chemical co-precipitation and PEGylated it. PEGylated SPIONs (PS) were studied for its detailed in vivo toxicity profile, in view of further surface engineering for its clinical applications. The intravenous LD50(14) of the PS was ascertained as 508.16 ± 41.52 mg/kg b wt. Histopathology of the vital organs of the animals injected with acute toxic doses showed pathological changes in spleen, lung, liver, and kidney. Accumulation of SPION was found in the aforementioned organs as confirmed by Prussian blue staining. Further, 1/10th dose of LD50(14) of PS and the Bare SPION (BS) was used to analyze a detailed toxicity profile, including genotoxicity (micronuclei formation and chromosomal aberration assays), organ-specific toxicity (a detailed serum biochemical analysis), and also determination of oxidative stress. The results of toxicity profile indicated no significant toxicity due to systemic exposure of PS. Atomic absorption spectroscopy (AAS) analysis confirmed the accumulation of SPION majorly in lungs, liver spleen, and kidneys. The present study thus indicated an optimal dose of PS which could be used for surface modification for targeted drug delivery applications with least toxicity.

26 citations

Journal ArticleDOI
TL;DR: These guidelines help in preventing the laboratory staff and healthcare workers from contracting the disease which has a known human to human route of transmission and high rate of mortality.
Abstract: Declared as a pandemic by WHO on March 11, 2020, COVID-19 has brought about a dramatic change in the working of different laboratories across the country. Diagnostic laboratories testing different types of samples play a vital role in the treatment management. Irrespective of their size, each laboratory has to follow strict biosafety guidelines. Different sections of the laboratory receive samples that are variably infectious. Each sample needs to undergo a proper and well-designed processing system so that the personnel involved are not infected and also their close contacts. It takes a huge effort so as to limit the risk of exposure of the working staff during the collection, processing, reporting or dispatching of biohazard samples. Guidelines help in preventing the laboratory staff and healthcare workers from contracting the disease which has a known human to human route of transmission and high rate of mortality. A well-knit approach is the need of the hour to combat this fast spreading disease. We anticipate that the guidelines described in this article will be useful for continuing safe work practices by all the laboratories in the country.

10 citations

Journal ArticleDOI
TL;DR: In this paper, a breast tumor xenograft was established in athymic nude mice by subcutaneous injection of the MCF-7 cell line and assessed the tumor progression by photoacoustic spectroscopy combined with machine learning tools.

9 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review highlights the methods of synthesis and presents the most recent reports in the literature regarding advances in drug delivery using IONPs-based systems, as well as their antimicrobial activity against different microorganisms.
Abstract: Medical applications and biotechnological advances, including magnetic resonance imaging, cell separation and detection, tissue repair, magnetic hyperthermia and drug delivery, have strongly benefited from employing iron oxide nanoparticles (IONPs) due to their remarkable properties, such as superparamagnetism, size and possibility of receiving a biocompatible coating. Ongoing research efforts focus on reducing drug concentration, toxicity, and other side effects, while increasing efficacy of IONPs-based treatments. This review highlights the methods of synthesis and presents the most recent reports in the literature regarding advances in drug delivery using IONPs-based systems, as well as their antimicrobial activity against different microorganisms. Furthermore, the toxicity of IONPs alone and constituting nanosystems is also addressed.

366 citations

Journal ArticleDOI
TL;DR: The present review covers the physiology of skin, burn classification, burn wound pathogenesis, animal models of burn wound infection, and various topical therapeutic approaches designed to combat infection and stimulate healing, including biological based approaches and nanotechnology-based wound healing approaches as a revolutionizing area.

307 citations

Journal ArticleDOI
TL;DR: The purpose of this study is to explore the possibilities for the application of laser therapy in medicine and dentistry by analyzing lasers’ underlying mechanism of action on different cells, with a special focus on stem cells and mechanisms of repair.
Abstract: The purpose of this study is to explore the possibilities for the application of laser therapy in medicine and dentistry by analyzing lasers' underlying mechanism of action on different cells, with a special focus on stem cells and mechanisms of repair. The interest in the application of laser therapy in medicine and dentistry has remarkably increased in the last decade. There are different types of lasers available and their usage is well defined by different parameters, such as: wavelength, energy density, power output, and duration of radiation. Laser irradiation can induce a photobiomodulatory (PBM) effect on cells and tissues, contributing to a directed modulation of cell behaviors, enhancing the processes of tissue repair. Photobiomodulation (PBM), also known as low-level laser therapy (LLLT), can induce cell proliferation and enhance stem cell differentiation. Laser therapy is a non-invasive method that contributes to pain relief and reduces inflammation, parallel to the enhanced healing and tissue repair processes. The application of these properties was employed and observed in the treatment of various diseases and conditions, such as diabetes, brain injury, spinal cord damage, dermatological conditions, oral irritation, and in different areas of dentistry.

170 citations

Journal ArticleDOI
TL;DR: The properties and activities of lipopeptides and peptide hormones are described and how the lipidation of peptides could potentially produce therapeutic agents combating some of the most prevalent diseases and conditions are described.
Abstract: This review describes the properties and activities of lipopeptides and peptide hormones and how the lipidation of peptide hormones could potentially produce therapeutic agents combating some of the most prevalent diseases and conditions. The self-assembly of these types of molecules is outlined, and how this can impact on bioactivity. Peptide hormones specific to the uptake of food and produced in the gastrointestinal tract are discussed in detail. The advantages of lipidated peptide hormones over natural peptide hormones are summarised, in terms of stability and renal clearance, with potential application as therapeutic agents. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.

74 citations

Journal ArticleDOI
TL;DR: Red and near‐infrared light‐induced photobiomodulation therapy appears to emerge as a promising drug‐free approach for promoting wound healing, reduction in inflammation, pain and restoration of function owing to penetration power in conjunction with their ability to positively modulate the biochemical and molecular responses.
Abstract: Summary The innumerable intricacies associated with chronic wounds have made the development of new painless, noninvasive, biophysical therapeutic interventions as the focus of current biomedical research. Red and near-infrared light-induced photobiomodulation therapy appears to emerge as a promising drug-free approach for promoting wound healing, reduction in inflammation, pain and restoration of function owing to penetration power in conjunction with their ability to positively modulate the biochemical and molecular responses. This review will describe the physical properties of red and near-infrared light and their interaction with skin and highlight their efficacy of wound repair and regeneration. Near-infrared (800–830 nm) was found to be the most effective and widely studied wavelength range followed by red (630–680 nm) and 904 nm superpulsed light exhibiting beneficial photobiomodulatory effects on impaired dermal wound healing.

60 citations