Author
Sharda Tripathi
Other affiliations: Polytechnic University of Turin, Birla Institute of Technology and Science
Bio: Sharda Tripathi is an academic researcher from Indian Institute of Technology Delhi. The author has contributed to research in topic(s): Smart grid & Radio access network. The author has an hindex of 5, co-authored 12 publication(s) receiving 77 citation(s). Previous affiliations of Sharda Tripathi include Polytechnic University of Turin & Birla Institute of Technology and Science.
Papers
More filters
[...]
TL;DR: It is shown that compared to the existing characterization models, the proposed GM model provides a significantly better fit for smart meter data.
Abstract: In this paper, a novel characterization of smart meter data based on Gaussian mixture (GM) model is presented It is shown that compared to the existing characterization models, the proposed GM model provides a significantly better fit for smart meter data Furthermore, at each smart meter, sparsity of data is exploited to devise an adaptive data reduction algorithm using compressive sampling technique such that the bandwidth requirement for smart meter data transmission is reduced with minimum loss of information When compared to the closest competitive scheme, the proposed compressive sampling based data reduction algorithm is found to be noise robust and offers ${\text{128}}$ % and ${\text{74}}$ % higher bandwidth saving, respectively, at 1 s and 30 s sampling intervals for comparable reconstruction accuracy Proposed scheme is tested in real-time using RT-LAB
21 citations
[...]
TL;DR: A novel data driven framework based on Support Vector Regression to reduce the bandwidth requirement for transmission of phasor measurement unit (PMU) data by judicious elimination of redundant data at the PMU before transmission is presented.
Abstract: This paper presents a novel data driven framework based on $\epsilon$ -Support Vector Regression to reduce the bandwidth requirement for transmission of phasor measurement unit (PMU) data. This is achieved by judicious elimination of redundant data at the PMU before transmission. Simultaneously, the missing samples are predicted at PDC to ensure faithful identification of impending disturbances in the power system. Due to inherent nonstationary nature of PMU data, the hyperparameters are dynamically recomputed as necessary, thereby maintaining the accuracy of prediction and robustness of the algorithm. Performance of the proposed algorithm is evaluated via large scale simulations using powerline frequency data. A trade-off between prediction quality and runtime of the algorithm is observed, which is addressed by suitable selection of hyperparameters. Compared to the competitive data reduction scheme, the proposed algorithm saves around 60% bandwidth and identifies power system disturbances 73% more accurately.
17 citations
[...]
TL;DR: Performance studies indicate that compared to the state-of-the-art, the proposed technique is able to achieve impressive bandwidth saving for transmission of data over communication network without compromising faithful reconstruction of data at the receiver.
Abstract: Recent advances in electric metering infrastructure have given rise to the generation of gigantic chunks of data. Transmission of all of these data certainly poses a significant challenge in bandwidth and storage constrained Internet of Things (IoT), where smart meters act as sensors. In this work, a novel multivariate data compression scheme is proposed for smart metering IoT. The proposed algorithm exploits the cross correlation between different variables sensed by smart meters to reduce the dimension of data. Subsequently, sparsity in each of the decorrelated streams is utilized for temporal compression. To examine the quality of compression, the multivariate data is characterized using multivariate normal–autoregressive integrated moving average modeling before compression as well as after reconstruction of the compressed data. Our performance studies indicate that compared to the state-of-the-art, the proposed technique is able to achieve impressive bandwidth saving for transmission of data over communication network without compromising faithful reconstruction of data at the receiver. The proposed algorithm is tested in a real smart metering setup and its time complexity is also analyzed.
12 citations
[...]
TL;DR: This article surveys the existing green sensing and communication approaches to realize sustainable IoT systems for various applications and presents a few case studies that aim to generate sensed traffic data intelligently as well as prune it efficiently without sacrificing the required service quality.
Abstract: With the advent of Internet of Things (IoT) devices, their reconfigurability, networking, task automation, and control ability have been a boost to the evolution of traditional industries such as health-care, agriculture, power, education, and transport. However, the quantum of data produced by the IoT devices poses serious challenges on its storage, communication, computation, security, scalability, and system’s energy sustainability. To address these challenges, the concept of green sensing and communication has gained importance. This article surveys the existing green sensing and communication approaches to realize sustainable IoT systems for various applications. Further, a few case studies are presented that aim to generate sensed traffic data intelligently as well as prune it efficiently without sacrificing the required service quality. Challenges associated with these green techniques, various open issues, and future research directions for improving the energy efficiency of the IoT systems are also discussed.
8 citations
[...]
TL;DR: The overall objective has been demonstrating the ability of beyond state of the art circuits and system design for IoT communications, wherein context specific intelligence is applied at the at the node.
Abstract: In a smart IoT system, multi-sensing at a field node is a typical scenario. The examples considered in this study are pollution monitoring and smart energy metering. In such applications, energy sustainability and communication and storage resource usage optimization are two of the key issues of interest. In this study, on one hand it is intended to develop indigenous beyond state of the art multi-sensing boards with the inherent smartness in energy replenishment and sensing/communication activities. On the other hand, smart data collection and processing at the end node (fog node or edge node) is of interest primarily from efficient communication bandwidth usage perspective. On the first exercise towards energy sustainable IoT sensing and communication board design, we have designed a prototype for a 5G capable environmental air pollution monitoring system. The system measures concentrations of NO2, ozone, CO and SO2 using semiconductor sensors. Further, the system gathers other environmental parameters like temperature, humidity, PM1, PM2.5 and PM10. The prototype is equipped with a GPS sub-system for accurate geo-tagging. The board communicates through Wi-Fi and NB-IoT. The board is also equipped with energy harvesting power management, and is powered through solar energy and battery backup. On the second exercise, a working model of a smart IoT device with a data pruning subsystem is designed, where a smart energy meter is considered for an example application. As a proof of concept we plan to demonstrate data compression at the edge to save bandwidth required for data transmission to a remote cloud. At each smart meter, sparsity of data is exploited to devise an adaptive data reduction algorithm using compressive sampling technique such that the bandwidth requirement for smart meter data transmission is reduced with minimum loss of information. The Smart Energy Meter is WiFi and NB-IoT enabled. This meter is capable of logging multiple energy consumption parameters. The overall objective has been demonstrating the ability of beyond state of the art circuits and system design for IoT communications, wherein context specific intelligence is applied at the at the node. The broad philosophy in this study can be readily extended to any chosen IoT application.
5 citations
Cited by
More filters
[...]
TL;DR: In this paper, an analytical model of a single-cell LoRa system that accounts for the impact of interference among transmissions over the same SF (co-SF) as well as different SFs (inter-SF).
Abstract: Low-power wide-area network (LPWAN) technologies are gaining momentum for Internet-of-things applications since they promise wide coverage to a massive number of battery operated devices using grant-free medium access. LoRaWAN, with its physical (PHY) layer design and regulatory efforts, has emerged as the widely adopted LPWAN solution. By using chirp spread spectrum modulation with qausi-orthogonal spreading factors (SFs), LoRa PHY offers coverage to wide-area applications while supporting high-density of devices. However, thus far its scalability performance has been inadequately modeled and the effect of interference resulting from the imperfect orthogonality of the SFs has not been considered. In this paper, we present an analytical model of a single-cell LoRa system that accounts for the impact of interference among transmissions over the same SF (co-SF) as well as different SFs (inter-SF). By modeling the interference field as Poisson point process under duty cycled ALOHA, we derive the signal-to-interference ratio distributions for several interference conditions. Results show that, for a duty cycle as low as 0.33%, the network performance under co-SF interference alone is considerably optimistic as the inclusion of inter-SF interference unveils a further drop in the success probability and the coverage probability of approximately 10% and 15%, respectively, for 1500 devices in a LoRa channel. Finally, we illustrate how our analysis can characterize the critical device density with respect to cell size for a given reliability target.
115 citations
Posted Content•
[...]
TL;DR: This paper presents an analytical model of a single-cell LoRa system that accounts for the impact of interference among transmissions over the same SF (co-SF) as well as different SFs (inter-SF), and derives the signal-to-interference ratio distributions for several interference conditions.
Abstract: Low-power wide-area network (LPWAN) technologies are gaining momentum for internet-of-things (IoT) applications since they promise wide coverage to a massive number of battery-operated devices using grant-free medium access. LoRaWAN, with its physical (PHY) layer design and regulatory efforts, has emerged as the widely adopted LPWAN solution. By using chirp spread spectrum modulation with qausi-orthogonal spreading factors (SFs), LoRa PHY offers coverage to wide-area applications while supporting high-density of devices. However, thus far its scalability performance has been inadequately modeled and the effect of interference resulting from the imperfect orthogonality of the SFs has not been considered. In this paper, we present an analytical model of a single-cell LoRa system that accounts for the impact of interference among transmissions over the same SF (co-SF) as well as different SFs (inter-SF). By modeling the interference field as Poisson point process under duty-cycled ALOHA, we derive the signal-to-interference ratio (SIR) distributions for several interference conditions. Results show that, for a duty cycle as low as 0.33%, the network performance under co-SF interference alone is considerably optimistic as the inclusion of inter-SF interference unveils a further drop in the success probability and the coverage probability of approximately 10% and 15%, respectively for 1500 devices in a LoRa channel. Finally, we illustrate how our analysis can characterize the critical device density with respect to cell size for a given reliability target.
81 citations
[...]
TL;DR: This paper proposes a deep learning-based YLP feature extraction that jointly captures daily and seasonal variations by leveraging convolutional autoencoder (CAE) and confirms that year-round characteristics are well captured during the clustering process and also clearly visualized with load images.
Abstract: As the number of smart meters increases, compression of metering data becomes essential for data transmission, storing and processing perspectives. Specifically, feature extraction can be used for the compression of metering data and further be utilized for smart grid applications such as customer clustering. So far, there are many studies for compression and clustering based on daily load profiles. However, in order to account for long-term characteristics of electricity load, utilizing yearly load profiles (YLPs) is vital for customer load clustering and analysis. In this paper, we propose a deep learning-based YLP feature extraction that jointly captures daily and seasonal variations. By leveraging convolutional autoencoder (CAE), YLPs in 8,640-dimensional space are compressed to 100-dimensional vectors. We apply the proposed CAE framework to YLPs of 1,405 residential customers and verify that the proposed CAE outperforms other dimensionality reduction methods in terms of reconstruction errors, e.g., by 19–40%, or the compression ratio is increased by 130% or higher than other methods for the same reconstruction error. In addition, clustering analysis is performed on the encoded YLPs. Our results confirm that year-round characteristics are well captured during the clustering process and also clearly visualized with load images.
22 citations
[...]
TL;DR: A stacked auto-encoder (SAE)-based load data mining approach is proposed that is more capable to achieve the minimum of error and satisfactory compression ratios (CR) than benchmark compressors and significantly improves the classification accuracy on both appliance and house level datasets.
Abstract: With the development of advanced metering infrastructure (AMI), electrical data are collected frequently by smart meters. Consequently, the load data volume and length increase dramatically, which aggravates the data storage and transmission burdens in smart grids. On the other hand, for event detection or market-based demand response applications, load service entities (LSEs) want smart meter readings to be classified in specific and meaningful types. Considering these challenges, a stacked auto-encoder (SAE)-based load data mining approach is proposed. First, an innovative framework for smart meter data flow is established. On the user side, the SAEs are utilized to compress load data in a distributed way. Then, centralized classification is adopted at remote data center by softmax classifier. Through the layer-wise feature extracting of SAE, the sparse and lengthy raw data are expressed in compact forms and then classified based on features. A global fine-tuning strategy based on a well-defined labeled subset is embedded to improve the extracted features and the classification accuracy. Case studies in China and Ireland demonstrate that the proposed method is more capable to achieve the minimum of error and satisfactory compression ratios (CR) than benchmark compressors. It also significantly improves the classification accuracy on both appliance and house level datasets.
21 citations
[...]
TL;DR: A deep-learning-based compression method for smart meter data is proposed via stacked convolutional sparse auto-encoder (SCSAE), which can attain significant enhancement in model size, computational efficiency, and reconstruction error reduction while maintaining the most abundant details.
Abstract: With the wide deployment of smart meters in distribution systems, a new challenge emerges for the storage and transmission of huge volume of power consumption data collected by smart meters. In this paper, a deep-learning-based compression method for smart meter data is proposed via stacked convolutional sparse auto-encoder (SCSAE). An efficient and lightweight auto-encoder structure is first designed by leveraging the unique characteristics of smart meter readings. Specifically, the encoder is designed based on 2D separable convolution layers and the decoder is based on transposed convolution layers. Compared with the existing auto-encoder method and traditional methods, the proposed structure is redesigned, and the parameters and reconstruction errors are efficiently reduced. In addition, cluster-based indexes are used to represent the regularity of power consumption behavior and the relationship between electricity consumption behavior and compression effect is studied. Case studies illustrate that the proposed method can attain significant enhancement in model size, computational efficiency, and reconstruction error reduction while maintaining the most abundant details. And grouping compression considering users’ electricity consumption rules can further improve the compression effect.
17 citations