scispace - formally typeset
Search or ask a question
Author

Sharee J. McNab

Bio: Sharee J. McNab is an academic researcher from IBM. The author has contributed to research in topics: Photonic crystal & Photonic integrated circuit. The author has an hindex of 25, co-authored 63 publications receiving 5578 citations. Previous affiliations of Sharee J. McNab include MacDiarmid Institute for Advanced Materials and Nanotechnology & University of Canterbury.


Papers
More filters
Journal ArticleDOI
03 Nov 2005-Nature
TL;DR: An over 300-fold reduction of the group velocity on a silicon chip via an ultra-compact photonic integrated circuit using low-loss silicon photonic crystal waveguides that can support an optical mode with a submicrometre cross-section is experimentally demonstrated.
Abstract: It is known that light can be slowed down in dispersive materials near resonances. Dramatic reduction of the light group velocity-and even bringing light pulses to a complete halt-has been demonstrated recently in various atomic and solid state systems, where the material absorption is cancelled via quantum optical coherent effects. Exploitation of slow light phenomena has potential for applications ranging from all-optical storage to all-optical switching. Existing schemes, however, are restricted to the narrow frequency range of the material resonance, which limits the operation frequency, maximum data rate and storage capacity. Moreover, the implementation of external lasers, low pressures and/or low temperatures prevents miniaturization and hinders practical applications. Here we experimentally demonstrate an over 300-fold reduction of the group velocity on a silicon chip via an ultra-compact photonic integrated circuit using low-loss silicon photonic crystal waveguides that can support an optical mode with a submicrometre cross-section. In addition, we show fast (approximately 100 ns) and efficient (2 mW electric power) active control of the group velocity by localized heating of the photonic crystal waveguide with an integrated micro-heater.

1,307 citations

Journal ArticleDOI
Yurii A. Vlasov1, Sharee J. McNab1
TL;DR: The fabrication and accurate measurement of propagation and bending losses in single-mode silicon waveguides with submicron dimensions fabricated on silicon-on-insulator wafers with record low numbers can be used as a benchmark for further development of silicon microphotonic components and circuits.
Abstract: We report the fabrication and accurate measurement of propagation and bending losses in single-mode silicon waveguides with submicron dimensions fabricated on silicon-on-insulator wafers. Owing to the small sidewall surface roughness achieved by processing on a standard 200mm CMOS fabrication line, minimal propagation losses of 3.6+/-0.1dB/cm for the TE polarization were measured at the telecommunications wavelength of 1.5microm. Losses per 90 masculine bend are measured to be 0.086+/-0.005dB for a bending radius of 1microm and as low as 0.013+/-0.005dB for a bend radius of 2microm. These record low numbers can be used as a benchmark for further development of silicon microphotonic components and circuits.

999 citations

Journal ArticleDOI
TL;DR: The combination of an efficient two-stage coupling scheme and utilization of ultra-long (up to 2mm) photonic crystal waveguides reduces the uncertainty in determining the loss figure to 3dB/cm.
Abstract: We report the design and testing of an SOI-based photonic integrated circuit containing two-dimensional membrane-type photonic crystal waveguides. The circuit comprises spot-size converters to efficiently couple light from a fiber into single-mode strip waveguides and butt-couplers to couple from strip waveguides to photonic crystal waveguides. Each optical interface was optimized to minimize back-reflections and reduce the Fabry-Perot noise. The transmission characteristics of each component are measured and record low propagation losses in photonic crystal waveguides of 24dB/cm are reported. The combination of an efficient two-stage coupling scheme and utilization of ultra-long (up to 2mm) photonic crystal waveguides reduces the uncertainty in determining the loss figure to 3dB/cm.

789 citations

Proceedings ArticleDOI
14 Jun 2005
TL;DR: This work demonstrates the smallest 6T and full 8T-SRAM cells to date and provides a much greater enhancement in stability by eliminating cell disturbs during a read access, thus facilitating continued technology scaling.
Abstract: SRAM cell stability will be a primary concern for future technologies due to variability and decreasing power supply voltages. 6T-SRAM can be optimized for stability by choosing the cell layout, device threshold voltages, and the /spl beta/ ratio. 8T-SRAM, however, provides a much greater enhancement in stability by eliminating cell disturbs during a read access, thus facilitating continued technology scaling. We demonstrate the smallest 6T (0.124/spl mu/m/sup 2/ half-cell) and full 8T (0.1998/spl mu/m/sup 2/) cells to date.

652 citations

Journal ArticleDOI
TL;DR: This work shows the feasibility of ultrasmall SOI waveguides for the development of SOI-based on-chip optical amplifiers and active photonic integrated circuits.
Abstract: We measure stimulated Raman gain at 1550 nm in an ultrasmall SOI strip waveguide, cross-section of 0.098 µm2. We obtain signal amplification of up to 0.7 dB in the counter-propagating configuration for a sample length of 4.2 mm and using a diode pump at 1435 nm with powers of <30 mW. The Raman amplifier has a figure-of-merit (FOM) of 57.47 dB/cm/W. This work shows the feasibility of ultrasmall SOI waveguides for the development of SOI-based on-chip optical amplifiers and active photonic integrated circuits.

269 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review describes the recent progress made in creating nanostructured metamaterials with a negative index at optical wavelengths, and discusses some of the devices that could result from these new materials.
Abstract: Artificially engineered metamaterials are now demonstrating unprecedented electromagnetic properties that cannot be obtained with naturally occurring materials. In particular, they provide a route to creating materials that possess a negative refractive index and offer exciting new prospects for manipulating light. This review describes the recent progress made in creating nanostructured metamaterials with a negative index at optical wavelengths, and discusses some of the devices that could result from these new materials.

2,654 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce the concept of Fano resonances, which can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes, and explain their geometrical and/or dynamical origin.
Abstract: Modern nanotechnology allows one to scale down various important devices (sensors, chips, fibers, etc.) and thus opens up new horizons for their applications. The efficiency of most of them is based on fundamental physical phenomena, such as transport of wave excitations and resonances. Short propagation distances make phase-coherent processes of waves important. Often the scattering of waves involves propagation along different paths and, as a consequence, results in interference phenomena, where constructive interference corresponds to resonant enhancement and destructive interference to resonant suppression of the transmission. Recently, a variety of experimental and theoretical work has revealed such patterns in different physical settings. The purpose of this review is to relate resonant scattering to Fano resonances, known from atomic physics. One of the main features of the Fano resonance is its asymmetric line profile. The asymmetry originates from a close coexistence of resonant transmission and resonant reflection and can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes. The basic concepts of Fano resonances are introduced, their geometrical and/or dynamical origin are explained, and theoretical and experimental studies of light propagation in photonic devices, charge transport through quantum dots, plasmon scattering in Josephson-junction networks, and matter-wave scattering in ultracold atom systems, among others are reviewed.

2,520 citations

Journal ArticleDOI
19 May 2005-Nature
TL;DR: Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures, and here a high-speed electro-optical modulator in compact silicon structures is experimentally demonstrated.
Abstract: Metal interconnections are expected to become the limiting factor for the performance of electronic systems as transistors continue to shrink in size. Replacing them by optical interconnections, at different levels ranging from rack-to-rack down to chip-to-chip and intra-chip interconnections, could provide the low power dissipation, low latencies and high bandwidths that are needed. The implementation of optical interconnections relies on the development of micro-optical devices that are integrated with the microelectronics on chips. Recent demonstrations of silicon low-loss waveguides, light emitters, amplifiers and lasers approach this goal, but a small silicon electro-optic modulator with a size small enough for chip-scale integration has not yet been demonstrated. Here we experimentally demonstrate a high-speed electro-optical modulator in compact silicon structures. The modulator is based on a resonant light-confining structure that enhances the sensitivity of light to small changes in refractive index of the silicon and also enables high-speed operation. The modulator is 12 micrometres in diameter, three orders of magnitude smaller than previously demonstrated. Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures.

2,336 citations

Journal ArticleDOI
TL;DR: An overview of the current state-of-the-art in silicon nanophotonic ring resonators is presented in this paper, where the basic theory of ring resonance is discussed and applied to the peculiarities of submicron silicon photonic wire waveguides: the small dimensions and tight bend radii, sensitivity to perturbations and the boundary conditions of the fabrication processes.
Abstract: An overview is presented of the current state-of-the-art in silicon nanophotonic ring resonators. Basic theory of ring resonators is discussed, and applied to the peculiarities of submicron silicon photonic wire waveguides: the small dimensions and tight bend radii, sensitivity to perturbations and the boundary conditions of the fabrication processes. Theory is compared to quantitative measurements. Finally, several of the more promising applications of silicon ring resonators are discussed: filters and optical delay lines, label-free biosensors, and active rings for efficient modulators and even light sources.

1,989 citations