scispace - formally typeset
Search or ask a question
Author

Sharon Gerecht

Bio: Sharon Gerecht is an academic researcher from Johns Hopkins University. The author has contributed to research in topics: Induced pluripotent stem cell & Stem cell. The author has an hindex of 50, co-authored 175 publications receiving 8255 citations. Previous affiliations of Sharon Gerecht include Tel Aviv University & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: It is reported that a completely synthetic hydrogel matrix can support long-term self-renewal of hESCs in the presence of conditioned medium from mouse embryonic fibroblast feeder layers, and direct cell differentiation.
Abstract: Control of self-renewal and differentiation of human ES cells (hESCs) remains a challenge. This is largely due to the use of culture systems that involve poorly defined animal products and do not mimic the normal developmental milieu. Routine protocols involve the propagation of hESCs on mouse fibroblast or human feeder layers, enzymatic cell removal, and spontaneous differentiation in cultures of embryoid bodies, and each of these steps involves significant variability of culture conditions. We report that a completely synthetic hydrogel matrix can support (i) long-term self-renewal of hESCs in the presence of conditioned medium from mouse embryonic fibroblast feeder layers, and (ii) direct cell differentiation. Hyaluronic acid (HA) hydrogels were selected because of the role of HA in early development and feeder layer cultures of hESCs and the controllability of hydrogel architecture, mechanics, and degradation. When encapsulated in 3D HA hydrogels (but not within other hydrogels or in monolayer cultures on HA), hESCs maintained their undifferentiated state, preserved their normal karyotype, and maintained their full differentiation capacity as indicated by embryoid body formation. Differentiation could be induced within the same hydrogel by simply altering soluble factors. We therefore propose that HA hydrogels, with their developmentally relevant composition and tunable physical properties, provide a unique microenvironment for the self-renewal and differentiation of hESCs.

664 citations

Journal ArticleDOI
TL;DR: Customized dextran-based hydrogel alone, with no additional growth factors, cytokines, or cells, promoted remarkable neovascularization and skin regeneration and may lead to novel treatments for dermal wounds.
Abstract: Neovascularization is a critical determinant of wound-healing outcomes for deep burn injuries. We hypothesize that dextran-based hydrogels can serve as instructive scaffolds to promote neovascularization and skin regeneration in third-degree burn wounds. Dextran hydrogels are soft and pliable, offering opportunities to improve the management of burn wound treatment. We first developed a procedure to treat burn wounds on mice with dextran hydrogels. In this procedure, we followed clinical practice of wound excision to remove full-thickness burned skin, and then covered the wound with the dextran hydrogel and a dressing layer. Our procedure allows the hydrogel to remain intact and securely in place during the entire healing period, thus offering opportunities to simplify the management of burn wound treatment. A 3-week comparative study indicated that dextran hydrogel promoted dermal regeneration with complete skin appendages. The hydrogel scaffold facilitated early inflammatory cell infiltration that led to its rapid degradation, promoting the infiltration of angiogenic cells into the healing wounds. Endothelial cells homed into the hydrogel scaffolds to enable neovascularization by day 7, resulting in an increased blood flow significantly greater than treated and untreated controls. By day 21, burn wounds treated with hydrogel developed a mature epithelial structure with hair follicles and sebaceous glands. After 5 weeks of treatment, the hydrogel scaffolds promoted new hair growth and epidermal morphology and thickness similar to normal mouse skin. Collectively, our evidence shows that customized dextran-based hydrogel alone, with no additional growth factors, cytokines, or cells, promoted remarkable neovascularization and skin regeneration and may lead to novel treatments for dermal wounds.

445 citations

Journal ArticleDOI
TL;DR: Functionalized dextran-based hydrogels could enable derivation of vascular cells in large quantities, particularly endothelial cells, for potential application in tissue engineering and regenerative medicine.

284 citations

Journal ArticleDOI
TL;DR: Cardiac differentiation in these EBs was evidenced by spontaneous contractions, expression of troponin T and its sarcomeric organization, implying that electrical stimulation plays a role in cardiac differentiation of hESCs, through mechanisms associated with the intracellular generation of ROS.

249 citations

Journal ArticleDOI
TL;DR: The vascular progenitors isolated from human embryonic stem cells using methods established in the present study could provide a means to examine the mechanisms of endothelial and SM cell development, and they could also provide a potential source of cells for vascular tissue engineering.
Abstract: We report that human embryonic stem cells contain a population of vascular progenitor cells that have the ability to differentiate into endothelial-like and smooth muscle (SM)-like cells. Vascular progenitor cells were isolated from EBs grown in suspension for 10 days and were characterized by expression of the endothelial/hematopoietic marker CD34 (CD34+ cells). When these cells are subsequently cultured in EGM-2 (endothelial growth medium) supplemented with vascular endothelial growth factor-165 (50 ng/mL), they give rise to endothelial-like cells characterized by a cobblestone cell morphology, expression of endothelial markers (platelet endothelial cell-adhesion molecule-1, CD34, KDR/Flk-1, vascular endothelial cadherin, von Willebrand factor), incorporation of acetylated low-density lipoprotein, and formation of capillary-like structures when placed in Matrigel. In contrast, when CD34+ cells are cultured in EGM-2 supplemented with platelet-derived growth factor-BB (50 ng/mL), they give rise to SM-like cells characterized by spindle-shape morphology, expression of SM cell markers (alpha-SM actin, SM myosin heavy chain, calponin, caldesmon, SM alpha-22), and the ability to contract and relax in response to common pharmacological agents such as carbachol and atropine but rarely form capillary-like structures when placed in Matrigel. Implantation studies in nude mice show that both cell types contribute to the formation of human microvasculature. Some microvessels contained mouse blood cells, which indicates functional integration with host vasculature. Therefore, the vascular progenitors isolated from human embryonic stem cells using methods established in the present study could provide a means to examine the mechanisms of endothelial and SM cell development, and they could also provide a potential source of cells for vascular tissue engineering.

240 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Jun 2005

3,154 citations

Journal ArticleDOI
26 Jun 2009-Science
TL;DR: Multifaceted technologies are increasingly required to produce and interrogate cells ex vivo, to build predictive models, and, ultimately, to enhance stem cell integration in vivo for therapeutic benefit.
Abstract: Stem cell fate is influenced by a number of factors and interactions that require robust control for safe and effective regeneration of functional tissue. Coordinated interactions with soluble factors, other cells, and extracellular matrices define a local biochemical and mechanical niche with complex and dynamic regulation that stem cells sense. Decellularized tissue matrices and synthetic polymer niches are being used in the clinic, and they are also beginning to clarify fundamental aspects of how stem cells contribute to homeostasis and repair, for example, at sites of fibrosis. Multifaceted technologies are increasingly required to produce and interrogate cells ex vivo, to build predictive models, and, ultimately, to enhance stem cell integration in vivo for therapeutic benefit.

2,446 citations

Journal ArticleDOI
TL;DR: The properties of hydrogels that are important for tissue engineering applications and the inherent material design constraints and challenges are discussed.
Abstract: Hydrogels, due to their unique biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics, have been the material of choice for many applications in regenerative medicine. They can serve as scaffolds that provide structural integrity to tissue constructs, control drug and protein delivery to tissues and cultures, and serve as adhesives or barriers between tissue and material surfaces. In this work, the properties of hydrogels that are important for tissue engineering applications and the inherent material design constraints and challenges are discussed. Recent research involving several different hydrogels polymerized from a variety of synthetic and natural monomers using typical and novel synthetic methods are highlighted. Finally, special attention is given to the microfabrication techniques that are currently resulting in important advances in the field.

2,339 citations