scispace - formally typeset
Search or ask a question
Author

Sheetal Kalyani

Bio: Sheetal Kalyani is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Fading & Computer science. The author has an hindex of 16, co-authored 134 publications receiving 1053 citations. Previous affiliations of Sheetal Kalyani include Motorola & Indian Institutes of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: By utilizing stochastic perturbation techniques, it is shown that the proposed method can train a deep learning-based communication system in real channel without any assumption on channel models.
Abstract: Recent developments in applying deep learning techniques to train end-to-end communication systems have shown great promise in improving the overall performance of the system. However, most of the current methods for applying deep learning to train physical-layer characteristics assume the availability of the explicit channel model. Training a neural network requires the availability of the functional form all the layers in the network to calculate gradients for optimization. The unavailability of gradients in a physical channel forced previous works to adopt simulation-based strategies to train the network and then fine tune only the receiver part with the actual channel. In this letter, we present a practical method to train an end-to-end communication system without relying on explicit channel models. By utilizing stochastic perturbation techniques, we show that the proposed method can train a deep learning-based communication system in real channel without any assumption on channel models.

116 citations

Journal ArticleDOI
TL;DR: The number of sensing operations is minimized with negligible increase in primary user interference; this implies that less energy is spent by the secondary user in sensing, and also higher throughput is achieved by saving the time spent on sensing.
Abstract: With the advent of the fifth generation of wireless standards and an increasing demand for higher throughput, methods to improve spectral efficiency of wireless systems have become very important. In the context of cognitive radio, a substantial increase in throughput is possible if the secondary user can make smart decisions regarding which channel to sense and when or how often to sense. Here, we propose an algorithm to not only select a channel for data transmission, but also to predict how long the channel will remain unoccupied so that the time spent on channel sensing can be minimized. Our algorithm learns in two stages—a reinforcement learning approach for channel selection and a Bayesian approach to determine the duration for which sensing can be skipped. Comparisons with other methods are provided through extensive simulations. We show that the number of sensing operations is minimized with negligible increase in primary user interference; this implies that less energy is spent by the secondary user in sensing, and also higher throughput is achieved by saving the time spent on sensing.

83 citations

Journal ArticleDOI
TL;DR: The feasibility of detection of delamination is experimentally demonstrated, whose size is comparable to the ultrasonic wavelength with probability of detection better than 90% using <1% of the total number of samples required for conventional imaging, even under conditions wherein the SNR is as low as 5 dB.

75 citations

Journal ArticleDOI
TL;DR: In this article , a baseline-free statistical approach for the identification and localization of delamination using sparse sampling and density-based spatial clustering of applications with noise (DBSCAN) technique is proposed.
Abstract: Delamination in composite structures is characterized by a resonant cavity wherein a fraction of an ultrasonic guided wave may be trapped. Based on this wave trapping phenomenon, we propose a baseline-free statistical approach for the identification and localization of delamination using sparse sampling and density-based spatial clustering of applications with noise (DBSCAN) technique. The proposed technique can be deployed for rapid inspection with minimal human intervention. The Performance of the proposed technique in terms of its ability to determine the precise location of such defects is quantified through the probability of detection measurements. The robustness of the proposed technique is tested through extensive simulations consisting of different random locations of defects on flat plate structures with different sizes and orientation as well as different values of signal to noise ratio of the simulated data. The simulation results are also validated using experimental data and the results are found to be in good agreement.

67 citations

Posted Content
TL;DR: This work proposes a variant of Thompson Sampling which can be used in both rested and restless bandit scenarios and derives the exact expression for the probability of picking sub-optimal arms from the parameters of prior distribution.
Abstract: We consider the multi armed bandit problem in non-stationary environments. Based on the Bayesian method, we propose a variant of Thompson Sampling which can be used in both rested and restless bandit scenarios. Applying discounting to the parameters of prior distribution, we describe a way to systematically reduce the effect of past observations. Further, we derive the exact expression for the probability of picking sub-optimal arms. By increasing the exploitative value of Bayes' samples, we also provide an optimistic version of the algorithm. Extensive empirical analysis is conducted under various scenarios to validate the utility of proposed algorithms. A comparison study with various state-of-the-arm algorithms is also included.

61 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: Convergence of Probability Measures as mentioned in this paper is a well-known convergence of probability measures. But it does not consider the relationship between probability measures and the probability distribution of probabilities.
Abstract: Convergence of Probability Measures. By P. Billingsley. Chichester, Sussex, Wiley, 1968. xii, 253 p. 9 1/4“. 117s.

5,689 citations

01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations

Journal Article
TL;DR: In this article, the authors explore the effect of dimensionality on the nearest neighbor problem and show that under a broad set of conditions (much broader than independent and identically distributed dimensions), as dimensionality increases, the distance to the nearest data point approaches the distance of the farthest data point.
Abstract: We explore the effect of dimensionality on the nearest neighbor problem. We show that under a broad set of conditions (much broader than independent and identically distributed dimensions), as dimensionality increases, the distance to the nearest data point approaches the distance to the farthest data point. To provide a practical perspective, we present empirical results on both real and synthetic data sets that demonstrate that this effect can occur for as few as 10-15 dimensions. These results should not be interpreted to mean that high-dimensional indexing is never meaningful; we illustrate this point by identifying some high-dimensional workloads for which this effect does not occur. However, our results do emphasize that the methodology used almost universally in the database literature to evaluate high-dimensional indexing techniques is flawed, and should be modified. In particular, most such techniques proposed in the literature are not evaluated versus simple linear scan, and are evaluated over workloads for which nearest neighbor is not meaningful. Often, even the reported experiments, when analyzed carefully, show that linear scan would outperform the techniques being proposed on the workloads studied in high (10-15) dimensionality!.

1,992 citations

Journal ArticleDOI
TL;DR: Reconfigurable intelligent surfaces (RISs) can be realized in different ways, which include (i) large arrays of inexpensive antennas that are usually spaced half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces whose scattering elements have sizes and inter-distances much smaller than the wavelength.
Abstract: Reconfigurable intelligent surfaces (RISs) are an emerging transmission technology for application to wireless communications. RISs can be realized in different ways, which include (i) large arrays of inexpensive antennas that are usually spaced half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces whose scattering elements have sizes and inter-distances much smaller than the wavelength. Compared with other transmission technologies, e.g., phased arrays, multi-antenna transmitters, and relays, RISs require the largest number of scattering elements, but each of them needs to be backed by the fewest and least costly components. Also, no power amplifiers are usually needed. For these reasons, RISs constitute a promising software-defined architecture that can be realized at reduced cost, size, weight, and power (C-SWaP design), and are regarded as an enabling technology for realizing the emerging concept of smart radio environments (SREs). In this paper, we (i) introduce the emerging research field of RIS-empowered SREs; (ii) overview the most suitable applications of RISs in wireless networks; (iii) present an electromagnetic-based communication-theoretic framework for analyzing and optimizing metamaterial-based RISs; (iv) provide a comprehensive overview of the current state of research; and (v) discuss the most important research issues to tackle. Owing to the interdisciplinary essence of RIS-empowered SREs, finally, we put forth the need of reconciling and reuniting C. E. Shannon’s mathematical theory of communication with G. Green’s and J. C. Maxwell’s mathematical theories of electromagnetism for appropriately modeling, analyzing, optimizing, and deploying future wireless networks empowered by RISs.

1,158 citations