scispace - formally typeset
Search or ask a question
Author

Shehrin Sayed

Bio: Shehrin Sayed is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Topological insulator & Spintronics. The author has an hindex of 11, co-authored 41 publications receiving 312 citations. Previous affiliations of Shehrin Sayed include Purdue University & Lawrence Berkeley National Laboratory.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a simple semiclassical relationship is found where the spin Hall angle increases for higher degrees of spinmomentum locking and it also increases for lower Fermi wave vectors.
Abstract: Author(s): Everhardt, AS; Dc, M; Huang, X; Sayed, S; Gosavi, TA; Tang, Y; Lin, CC; Manipatruni, S; Young, IA; Datta, S; Wang, JP; Ramesh, R | Abstract: Efficient charge to spin conversion is important for low-power spin logic devices. Spin and charge interconversion is commonly performed using heavy metals and topological insulators, while the field of oxides is not yet fully explored. Strontium iridate thin films were grown, where the different crystal structures form a perfect playground to understand the key factors in obtaining high charge to spin conversion efficiency (i.e., large spin Hall angle). It was found that the semiconducting Sr2IrO4 has a spin Hall angle of ∼0.1 (depending on measurement technique), which is promising for a spin-orbit coupled electronic system and comparable to Pt. In contrast, the perovskite SrIrO3, reported to have a Dirac cone near the Fermi level, has a larger spin Hall angle of 0.3-0.4 degrees. The largest difference between the two materials is a large degree of spin-momentum locking in SrIrO3, comparable to known topological insulators. A simple semiclassical relationship is found where the spin Hall angle increases for higher degrees of spin-momentum locking and it also increases for lower Fermi wave vectors. This relationship is then able to explain the decreased spin Hall angle below 10 nm film thickness in SrIrO3, by relating it to the correspondingly higher carrier concentration (related to the higher Fermi wave vector). Breaking the commonly believed anticorrelation between resistivity and carrier concentration paves a pathway to lower power losses due to resistance while keeping large spin Hall angles.

42 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a spin circuit with spin Hall effect (SHE) and spin Hall magnetoresistance (SME) based on the diffusion equation, which can be used as a building block to analyze any arbitrarily shaped GSHE material.
Abstract: Spin circuits with four component voltages and currents have been developed and used in the past to analyze various structures, which include non-collinear ferromagnets. Recent demonstrations of large spin orbit torques in heavy metals like Pt, Ta, and W open up new possibilities in spintronic applications by providing an alternative way to write information into a magnet. Here, we extend the four component (one charge and three spins) conductance matrix to include materials with spin Hall effect based on the standard diffusion equation. Our proposed spin circuit successfully reproduces standard results like spin Hall effect (SHE), inverse spin Hall effect, and spin Hall magnetoresistance. This circuit representation also makes it straightforward to analyze new configurations. We present two examples, namely, 1) the possibility of spin injection using giant SHE (GSHE) materials into semiconductors without tunneling barriers, and 2) the effect of spin ground on one surface to enhance spin current injection from the opposite surface in a thin GSHE sample. Finally, we provide an elemental conductance matrix for a small cubic structure which can be used as a building block to analyze any arbitrarily shaped GSHE material.

33 citations

Journal ArticleDOI
TL;DR: It is found that charge current flowing in a channel with spin-momentum locking such as topological insulator surface states or Rashba interfaces induces a spin voltage, which can be electrically measured with a ferromagnetic contact along the current path using Onsager reciprocity arguments.
Abstract: It is experimentally established that charge current flowing in a channel with spin-momentum locking such as topological insulator surface states or Rashba interfaces induces a spin voltage, which can be electrically measured with a ferromagnetic contact along the current path. Using this fact in conjunction with Onsager reciprocity arguments, we make the surprising prediction that the anti-parallel resistance of a spin valve can be either larger or smaller than the parallel resistance depending on the direction of spin flow relative to the direction of spin-momentum locking. However, we argue that this remarkable signature of spin-momentum locking can only be observed in multi-terminal measurements. Two-terminal measurements in the linear response regime, will show a single anti-parallel resistance larger than the parallel resistance as commonly observed in channels without spin-orbit coupling. We support this result with detailed numerical calculations based on a semiclassical model that provides insight into the underlying physics.

32 citations

Journal ArticleDOI
TL;DR: The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al.
Abstract: It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.

24 citations

Journal ArticleDOI
TL;DR: This paper presents a general theory for an arbitrary 2D channel with “spin momentum locking” due to spin-orbit coupling based on a semiclassical model that classifies all the channel electronic states into four groups based on the sign of the z-component of the spin (up (U), down (D), and theSign of the x- component of the velocity (+, −).
Abstract: In this paper we present a general theory for an arbitrary 2D channel with "spin momentum locking" due to spin-orbit coupling. It is based on a semiclassical model that classifies all the channel electronic states into four groups based on the sign of the z-component of the spin (up (U), down (D)) and the sign of the x-component of the velocity (+, -). This could be viewed as an extension of the standard spin diffusion model which uses two separate electrochemical potentials for U and D states. Our model uses four: U+, D+, U-, and D-. We use this formulation to develop an equivalent spin circuit that is also benchmarked against a full non-equilibrium Green's function (NEGF) model. The circuit representation can be used to interpret experiments and estimate important quantities of interest like the charge to spin conversion ratio or the maximum spin current that can be extracted. The model should be applicable to topological insulator surface states with parallel channels as well as to other layered structures with interfacial spin-orbit coupling.

21 citations


Cited by
More filters
01 Jan 2016
TL;DR: The electronic transport in mesoscopic systems is universally compatible with any devices to read, and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for reading electronic transport in mesoscopic systems. Maybe you have knowledge that, people have look numerous times for their favorite readings like this electronic transport in mesoscopic systems, but end up in harmful downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some harmful bugs inside their computer. electronic transport in mesoscopic systems is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the electronic transport in mesoscopic systems is universally compatible with any devices to read.

1,220 citations

Journal Article
TL;DR: In this article, the authors describe vector measurements of the current-induced effective field in Ta|CoFeB|MgO heterostructures and show that the effective field exhibits a significant dependence on the Ta and CoFeB layer thicknesses.
Abstract: Current-induced effective magnetic fields can provide efficient ways of electrically manipulating the magnetization of ultrathin magnetic heterostructures. Two effects, known as the Rashba spin orbit field and the spin Hall spin torque, have been reported to be responsible for the generation of the effective field. However, a quantitative understanding of the effective field, including its direction with respect to the current flow, is lacking. Here we describe vector measurements of the current-induced effective field in Ta|CoFeB|MgO heterostructrures. The effective field exhibits a significant dependence on the Ta and CoFeB layer thicknesses. In particular, a 1 nm thickness variation of the Ta layer can change the magnitude of the effective field by nearly two orders of magnitude. Moreover, its sign changes when the Ta layer thickness is reduced, indicating that there are two competing effects contributing to it. Our results illustrate that the presence of atomically thin metals can profoundly change the landscape for controlling magnetic moments in magnetic heterostructures electrically.

540 citations

Journal Article
TL;DR: Ferroelectricity in BaTiO3 crystals is used to tune the sharp metamagnetic transition temperature of epitaxially grown FeRh films and electrically drive a transition between antiferromagnetic and ferromagnetic order with only a few volts, just above room temperature, correspond to a magnetoelectric coupling larger than previous reports by at least one order of magnitude.
Abstract: Controlling magnetism by means of electric fields is a key issue for the future development of low-power spintronics1. Progress has been made in the electrical control of magnetic anisotropy2, domain structure3,4, spin polarization5,6 or critical temperatures7,8. However, the ability to turn on and o robust ferromagnetism at room temperature and above has remained elusive. Here we use ferroelectricity in BaTiO3 crystals to tune the sharp metamagnetic transition temperature of epitaxially grown FeRh films and electrically drive a transition between antiferromagnetic and ferromagnetic order with only a few volts, just above room temperature. The detailed analysis of the data in the light of first-principles calculations indicate that the phenomenon is mediated by both strain and field e ects from the BaTiO3. Our results correspond to a magnetoelectric coupling larger than previous reports by at least one order of magnitude and open new perspectives for the use of ferroelectrics in magnetic storage and spintronics.

371 citations

Journal ArticleDOI
TL;DR: Worldwide propolis has a tremendous popularity, but in India the studies over propolis have just started, not extensively reported except few regions of India like Maharashtra, West Bengal, Tamil Nadu, Gujrat, and Madhya Pradesh.
Abstract: Propolis is a natural resinous mixture produced by honey bees from substances collected from parts of plants, buds, and exudates. Due to its waxy nature and mechanical properties, bees use propolis in the construction and repair of their hives for sealing openings and cracks and smoothing out the internal walls and as a protective barrier against external invaders like snakes, lizards, and so forth, or against weathering threats like wind and rain. Bees gather propolis from different plants, in the temperate climate zone mainly from poplar. Current antimicrobial applications of propolis include formulations for cold syndrome (upper respiratory tract infections, common cold, and flu-like infections), wound healing, treatment of burns, acne, herpes simplex and genitalis, and neurodermatitis. Worldwide propolis has a tremendous popularity, but in India the studies over propolis have just started, not extensively reported except few regions of India like Maharashtra, West Bengal, Tamil Nadu, Gujrat, and Madhya Pradesh.

349 citations

Journal ArticleDOI
TL;DR: Environmental pollutants are probably a cause of premature ovarian insufficiency with an increased follicular depletion leading to an earlier age of menopause onset and the main mechanism seemed to be an increase in atresia of pre-antral follicles.
Abstract: Because only 25% of cases of premature ovarian insufficiency (POI) have a known etiology, the aim of this review was to summarize the associations and mechanisms of the impact of the environment on this pathology. Eligible studies were selected from an electronic literature search from the PUBMED database from January 2000 to February 2016 and associated references in published studies. Search terms included ovary, follicle, oocyte, endocrine disruptor, environmental exposure, occupational exposure, environmental contaminant, pesticide, polyaromatic hydrocarbon, polychlorinated biphenyl PCB, phenol, bisphenol, flame retardant, phthalate, dioxin, phytoestrogen, tobacco, smoke, cigarette, cosmetic, xenobiotic. The literature search was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We have included the human and animal studies corresponding to the terms and published in English. We have excluded articles that included results that did not concern ovarian pathology and those focused on ovarian cancer, polycystic ovary syndrome, endometriosis or precocious puberty. We have also excluded genetic, auto-immune or iatrogenic causes from our analysis. Finally, we have excluded animal data that does not concern mammals and studies based on results from in vitro culture. Data have been grouped according to the studied pollutants in order to synthetize their impact on follicular development and follicular atresia and the molecular pathways involved. Ninety-seven studies appeared to be eligible and were included in the present study, even though few directly address POI. Phthalates, bisphenol A, pesticides and tobacco were the most reported substances having a negative impact on ovarian function with an increased follicular depletion leading to an earlier age of menopause onset. These effects were found when exposure occured at different times throughout the lifetime from the prenatal to the adult period, possibly due to different mechanisms. The main mechanism seemed to be an increase in atresia of pre-antral follicles. Environmental pollutants are probably a cause of POI. Health officials and the general public must be aware of this environmental effect in order to implement individual and global preventive actions.

169 citations