scispace - formally typeset
Search or ask a question
Author

Sheila K. Singh

Bio: Sheila K. Singh is an academic researcher from McMaster University. The author has contributed to research in topics: Stem cell & Cancer stem cell. The author has an hindex of 33, co-authored 141 publications receiving 15654 citations. Previous affiliations of Sheila K. Singh include Hamilton Health Sciences & McMaster Children's Hospital.


Papers
More filters
Journal ArticleDOI
18 Nov 2004-Nature
TL;DR: The development of a xenograft assay that identified human brain tumour initiating cells that initiate tumours in vivo gives strong support for the CSC hypothesis as the basis for many solid tumours, and establishes a previously unidentified cellular target for more effective cancer therapies.
Abstract: The cancer stem cell (CSC) hypothesis suggests that neoplastic clones are maintained exclusively by a rare fraction of cells with stem cell properties. Although the existence of CSCs in human leukaemia is established, little evidence exists for CSCs in solid tumours, except for breast cancer. Recently, we prospectively isolated a CD133+ cell subpopulation from human brain tumours that exhibited stem cell properties in vitro. However, the true measures of CSCs are their capacity for self renewal and exact recapitulation of the original tumour. Here we report the development of a xenograft assay that identified human brain tumour initiating cells that initiate tumours in vivo. Only the CD133+ brain tumour fraction contains cells that are capable of tumour initiation in NOD-SCID (non-obese diabetic, severe combined immunodeficient) mouse brains. Injection of as few as 100 CD133+ cells produced a tumour that could be serially transplanted and was a phenocopy of the patient's original tumour, whereas injection of 10(5) CD133- cells engrafted but did not cause a tumour. Thus, the identification of brain tumour initiating cells provides insights into human brain tumour pathogenesis, giving strong support for the CSC hypothesis as the basis for many solid tumours, and establishes a previously unidentified cellular target for more effective cancer therapies.

7,120 citations

Journal Article
TL;DR: The identification and purification of a cancer stem cell from human brain tumors of different phenotypes that possesses a marked capacity for proliferation, self-renewal, and differentiation is reported.
Abstract: Most current research on human brain tumors is focused on the molecular and cellular analysis of the bulk tumor mass. However, there is overwhelming evidence in some malignancies that the tumor clone is heterogeneous with respect to proliferation and differentiation. In human leukemia, the tumor clone is organized as a hierarchy that originates from rare leukemic stem cells that possess extensive proliferative and self-renewal potential, and are responsible for maintaining the tumor clone. We report here the identification and purification of a cancer stem cell from human brain tumors of different phenotypes that possesses a marked capacity for proliferation, self-renewal, and differentiation. The increased self-renewal capacity of the brain tumor stem cell (BTSC) was highest from the most aggressive clinical samples of medulloblastoma compared with low-grade gliomas. The BTSC was exclusively isolated with the cell fraction expressing the neural stem cell surface marker CD133. These CD133+ cells could differentiate in culture into tumor cells that phenotypically resembled the tumor from the patient. The identification of a BTSC provides a powerful tool to investigate the tumorigenic process in the central nervous system and to develop therapies targeted to the BTSC.

4,899 citations

Journal ArticleDOI
20 Sep 2004-Oncogene
TL;DR: The identification of a brain tumor stem cells (BTSC) provides a powerful tool to investigate the tumorigenic process in the central nervous system and to develop therapies targeted to the BTSC.
Abstract: Most current research on human brain tumors is focused on the molecular and cellular analysis of the bulk tumor mass. However, evidence in leukemia and more recently in solid tumors such as breast cancer suggests that the tumor cell population is heterogeneous with respect to proliferation and differentiation. Recently, several groups have described the existence of a cancer stem cell population in human brain tumors of different phenotypes from both children and adults. The finding of brain tumor stem cells (BTSCs) has been made by applying the principles for cell culture and analysis of normal neural stem cells (NSCs) to brain tumor cell populations and by identification of cell surface markers that allow for isolation of distinct tumor cell populations that can then be studied in vitro and in vivo. A population of brain tumor cells can be enriched for BTSCs by cell sorting of dissociated suspensions of tumor cells for the NSC marker CD133. These CD133+ cells, which also expressed the NSC marker nestin, but not differentiated neural lineage markers, represent a minority fraction of the entire brain tumor cell population, and exclusively generate clonal tumor spheres in suspension culture and exhibit increased self-renewal capacity. BTSCs can be induced to differentiate in vitro into tumor cells that phenotypically resembled the tumor from the patient. Here, we discuss the evidence for and implications of the discovery of a cancer stem cell in human brain tumors. The identification of a BTSC provides a powerful tool to investigate the tumorigenic process in the central nervous system and to develop therapies targeted to the BTSC. Specific genetic and molecular analyses of the BTSC will further our understanding of the mechanisms of brain tumor growth, reinforcing parallels between normal neurogenesis and brain tumorigenesis.

700 citations

Journal ArticleDOI
03 Nov 2015-JAMA
TL;DR: Among patients with acute ischemic stroke, endovascular therapy with mechanical thrombectomy vs standard medical care with tPA was associated with improved functional outcomes and higher rates of angiographic revascularization, but no significant difference in symptomatic intracranial hemorrhage or all-cause mortality at 90 days.
Abstract: Importance Endovascular intervention for acute ischemic stroke improves revascularization. But trials examining endovascular therapy yielded variable functional outcomes, and the effect of endovascular intervention among subgroups needs better definition. Objective To examine the association between endovascular mechanical thrombectomy and clinical outcomes among patients with acute ischemic stroke. Data Sources We systematically searched MEDLINE, EMBASE, CINAHL, Google Scholar, and the Cochrane Library without language restriction through August 2015. Study Selection Eligible studies were randomized clinical trials of endovascular therapy with mechanical thrombectomy vs standard medical care, which includes the use of intravenous tissue plasminogen activator (tPA). Data Extraction and Synthesis Independent reviewers evaluated the quality of studies and abstracted the data. We calculated odds ratios (ORs) and 95% CIs for all outcomes using random-effects meta-analyses and performed subgroup and sensitivity analyses to examine whether certain imaging, patient, treatment, or study characteristics were associated with improved functional outcome. The strength of the evidence was examined for all outcomes using the GRADE method. Main Outcomes and Measures Ordinal improvement across modified Rankin scale (mRS) scores at 90 days, functional independence (mRS score, 0-2), angiographic revascularization at 24 hours, symptomatic intracranial hemorrhage within 90 days, and all-cause mortality at 90 days. Results Data were included from 8 trials involving 2423 patients (mean [SD] age, 67.4 [14.4] years; 1131 [46.7%] women), including 1313 who underwent endovascular thrombectomy and 1110 who received standard medical care with tPA. In a meta-analysis of these trials, endovascular therapy was associated with a significant proportional treatment benefit across mRS scores (OR, 1.56; 95% CI, 1.14–2.13; P = .005). Functional independence at 90 days (mRS score, 0-2) occurred among 557 of 1293 patients (44.6%; 95% CI, 36.6%-52.8%) in the endovascular therapy group vs 351 of 1094 patients (31.8%; 95% CI, 24.6%-40.0%) in the standard medical care group (risk difference, 12%; 95% CI, 3.8%-20.3%; OR, 1.71; 95% CI, 1.18-2.49; P = .005). Compared with standard medical care, endovascular thrombectomy was associated with significantly higher rates of angiographic revascularization at 24 hours (75.8% vs 34.1%; OR, 6.49; 95% CI, 4.79-8.79; P P = .56) or all-cause mortality at 90 days (218 deaths [15.8%] vs 201 deaths [17.8%]; OR, 0.87; 95% CI, 0.68-1.12; P = .27). Conclusions and Relevance Among patients with acute ischemic stroke, endovascular therapy with mechanical thrombectomy vs standard medical care with tPA was associated with improved functional outcomes and higher rates of angiographic revascularization, but no significant difference in symptomatic intracranial hemorrhage or all-cause mortality at 90 days.

388 citations

Journal ArticleDOI
TL;DR: Percutaneous bedside twist-drill drainage is a relatively safe and effective first-line management option for chronic subdural hematoma patients with CSDH and may result in potential health cost savings and eliminate perioperative risks related to general anesthetic.
Abstract: Objective:To compare the efficacy and safety of multiple treatment modalities for the management of chronic subdural hematoma (CSDH) patients.Background:Current management strategies of CSDHs remain widely controversial. Treatment options vary from medical therapy and bedside procedures to major ope

304 citations


Cited by
More filters
Journal ArticleDOI
09 Jun 2005-Nature
TL;DR: A new, bead-based flow cytometric miRNA expression profiling method is used to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers, and finds the miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours.
Abstract: Recent work has revealed the existence of a class of small non-coding RNA species, known as microRNAs (miRNAs), which have critical functions across various biological processes. Here we use a new, bead-based flow cytometric miRNA expression profiling method to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers. The miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours. We observe a general downregulation of miRNAs in tumours compared with normal tissues. Furthermore, we were able to successfully classify poorly differentiated tumours using miRNA expression profiles, whereas messenger RNA profiles were highly inaccurate when applied to the same samples. These findings highlight the potential of miRNA profiling in cancer diagnosis.

9,470 citations

Journal ArticleDOI
16 May 2008-Cell
TL;DR: It is reported that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers, and it is shown that those cells have an increased ability to form mammospheres, a property associated with mammARY epithelial stem cells.

8,052 citations

Journal ArticleDOI
18 Nov 2004-Nature
TL;DR: The development of a xenograft assay that identified human brain tumour initiating cells that initiate tumours in vivo gives strong support for the CSC hypothesis as the basis for many solid tumours, and establishes a previously unidentified cellular target for more effective cancer therapies.
Abstract: The cancer stem cell (CSC) hypothesis suggests that neoplastic clones are maintained exclusively by a rare fraction of cells with stem cell properties. Although the existence of CSCs in human leukaemia is established, little evidence exists for CSCs in solid tumours, except for breast cancer. Recently, we prospectively isolated a CD133+ cell subpopulation from human brain tumours that exhibited stem cell properties in vitro. However, the true measures of CSCs are their capacity for self renewal and exact recapitulation of the original tumour. Here we report the development of a xenograft assay that identified human brain tumour initiating cells that initiate tumours in vivo. Only the CD133+ brain tumour fraction contains cells that are capable of tumour initiation in NOD-SCID (non-obese diabetic, severe combined immunodeficient) mouse brains. Injection of as few as 100 CD133+ cells produced a tumour that could be serially transplanted and was a phenocopy of the patient's original tumour, whereas injection of 10(5) CD133- cells engrafted but did not cause a tumour. Thus, the identification of brain tumour initiating cells provides insights into human brain tumour pathogenesis, giving strong support for the CSC hypothesis as the basis for many solid tumours, and establishes a previously unidentified cellular target for more effective cancer therapies.

7,120 citations

Journal ArticleDOI
07 Dec 2006-Nature
TL;DR: This work shows that cancer stem cells contribute to glioma radioresistance through preferential activation of the DNA damage checkpoint response and an increase in DNA repair capacity, and suggests that CD133-positive tumour cells could be the source of tumour recurrence after radiation.
Abstract: Ionizing radiation represents the most effective therapy for glioblastoma (World Health Organization grade IV glioma), one of the most lethal human malignancies, but radiotherapy remains only palliative because of radioresistance. The mechanisms underlying tumour radioresistance have remained elusive. Here we show that cancer stem cells contribute to glioma radioresistance through preferential activation of the DNA damage checkpoint response and an increase in DNA repair capacity. The fraction of tumour cells expressing CD133 (Prominin-1), a marker for both neural stem cells and brain cancer stem cells, is enriched after radiation in gliomas. In both cell culture and the brains of immunocompromised mice, CD133-expressing glioma cells survive ionizing radiation in increased proportions relative to most tumour cells, which lack CD133. CD133-expressing tumour cells isolated from both human glioma xenografts and primary patient glioblastoma specimens preferentially activate the DNA damage checkpoint in response to radiation, and repair radiation-induced DNA damage more effectively than CD133-negative tumour cells. In addition, the radioresistance of CD133-positive glioma stem cells can be reversed with a specific inhibitor of the Chk1 and Chk2 checkpoint kinases. Our results suggest that CD133-positive tumour cells represent the cellular population that confers glioma radioresistance and could be the source of tumour recurrence after radiation. Targeting DNA damage checkpoint response in cancer stem cells may overcome this radioresistance and provide a therapeutic model for malignant brain cancers.

5,771 citations

Journal ArticleDOI
01 Nov 2016-Europace
TL;DR: The Task Force for the management of atrial fibrillation of the European Society of Cardiology has been endorsed by the European Stroke Organisation (ESO).
Abstract: The Task Force for the management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC Endorsed by the European Stroke Organisation (ESO)

5,255 citations