scispace - formally typeset
Search or ask a question
Author

Sheldon Schultz

Bio: Sheldon Schultz is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Magnetization & Plasmon. The author has an hindex of 43, co-authored 135 publications receiving 26175 citations. Previous affiliations of Sheldon Schultz include University of California & École Polytechnique Fédérale de Lausanne.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an electromagnetic metamaterial was fabricated and demonstrated to exhibit a "left-handed" (LH) propagation band at microwave frequencies, a situation never observed in naturally occurring materials or composites.
Abstract: Recently, an electromagnetic metamaterial was fabricated and demonstrated to exhibit a “left-handed” (LH) propagation band at microwave frequencies. A LH metamaterial is one characterized by material constants—the permeability and permittivity—which are simultaneously negative, a situation never observed in naturally occurring materials or composites. While the presence of the propagation band was shown to be an inherent demonstration of left handedness, actual numerical values for the material constants were not obtained. In the present work, using appropriate averages to define the macroscopic fields, we extract quantitative values for the effective permeability and permittivity from finite-difference simulations using three different approaches.

237 citations

Journal ArticleDOI
TL;DR: At resonance frequencies, extremely large enhancements of the electromagnetic fields occur near the surface of the particle, with amplitudes several hundred-fold that of the incident field.
Abstract: We study the plasmon resonances of 10–100(nm) two-dimensional metal particles with a non-regular shape. Movies illustrate the spectral response of such particles in the optical range. Contrary to particles with a simple shape (cylinder, ellipse) non-regular particles exhibit many distinct resonances over a large spectral range. At resonance frequencies, extremely large enhancements of the electromagnetic fields occur near the surface of the particle, with amplitudes several hundred-fold that of the incident field. Implications of these strong and localized fields for nano-optics and surface enhanced Raman scattering (SERS) are also discussed.

217 citations

Journal ArticleDOI
07 Nov 1991-Nature
TL;DR: In this article, the authors measured the electric field energy density for microwave radiation localized in essentially two-dimensional space by scattering from a random array of dielectric cylinders placed between a pair of parallel conducting plates.
Abstract: WAVEFUNCTIONS of electrons or photons in a strongly scattering random medium may become localized owing to the underlying wave nature of the particles1,2. Particularly surprising and counterintuitive is the prediction that, under appropriate conditions, scatterers placed randomly in space will always produce fully localized states—that is, an energy distribution of the normal modes whose envelope decays exponentially in all directions. In consequence, energy at the resonant frequency of a localized mode, injected into that mode's region of space, cannot diffuse away, but remains trapped until dissipated. Here we report measurements of the electric-field energy density for microwave radiation localized in essentially two-dimensional space by scattering from a random array of dielectric cylinders placed between a pair of parallel conducting plates. We detect regions of high energy density representing the signature of localized modes. The available range of measured variables, scattering materials and cylinder configurations offer the opportunity to provide quantitative answers to important general questions about strong localization. In particular, a better understanding of two-dimensional localization raises the possibility of using localized-mode resonances as a diagnostic tool for situations in which localization phenomenon may occur naturally3—for example, in investigations of the internal distribution of media and defects in geological strata, under-ocean topology or electronic thin films, all of which may exhibit pseudo-two-dimensional characteristics.

210 citations

Journal ArticleDOI
TL;DR: In this article, numerically the plasmon resonances of 10-50 nm nanowires with a non-elliptical section were investigated and the field distribution at the surface of these wires exhibits a dramatic enhancement, up to several hundred times the incident field amplitude.

205 citations

Journal ArticleDOI
TL;DR: In this article, a two-dimensional cubic lattice consisting of thin metal wires, having wire diameter of 30 μm, lattice constant of 120 μm and wire length of 1 mm, was constructed using microstereolithography.
Abstract: Metamaterials, which contain engineered subwavelength microstructures, can be designed to have positive or negative e and μ at desired frequencies. In this letter, we demonstrate a metamaterial which has a “plasmonic” response to electromagnetic waves in the terahertz (THz) range. The sharp change of reflection and transmission at this plasma frequency makes the structure a high pass filter. The reflection response is characterized by Fourier transform infrared spectroscopy, and a plasma frequency at 0.7 THz is observed, which agrees with the theoretical calculation. The metamaterial is a two-dimensional cubic lattice consisting of thin metal wires, having wire diameter of 30 μm, lattice constant of 120 μm, and wire length of 1 mm. The microstereolithography technique is employed to fabricate the high-aspect-ratio lattice.

204 citations


Cited by
More filters
Journal ArticleDOI
14 Aug 2003-Nature
TL;DR: By altering the structure of a metal's surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved.
Abstract: Surface plasmons are waves that propagate along the surface of a conductor. By altering the structure of a metal's surface, the properties of surface plasmons--in particular their interaction with light--can be tailored, which offers the potential for developing new types of photonic device. This could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved. Surface plasmons are being explored for their potential in subwavelength optics, data storage, light generation, microscopy and bio-photonics.

10,689 citations

Journal ArticleDOI
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

Journal ArticleDOI
06 Apr 2001-Science
TL;DR: These experiments directly confirm the predictions of Maxwell's equations that n is given by the negative square root ofɛ·μ for the frequencies where both the permittivity and the permeability are negative.
Abstract: We present experimental scattering data at microwave frequencies on a structured metamaterial that exhibits a frequency band where the effective index of refraction (n) is negative. The material consists of a two-dimensional array of repeated unit cells of copper strips and split ring resonators on interlocking strips of standard circuit board material. By measuring the scattering angle of the transmitted beam through a prism fabricated from this material, we determine the effective n, appropriate to Snell's law. These experiments directly confirm the predictions of Maxwell's equations that n is given by the negative square root of epsilon.mu for the frequencies where both the permittivity (epsilon) and the permeability (mu) are negative. Configurations of geometrical optical designs are now possible that could not be realized by positive index materials.

8,477 citations

Journal ArticleDOI
TL;DR: Recent advances at the intersection of plasmonics and photovoltaics are surveyed and an outlook on the future of solar cells based on these principles is offered.
Abstract: The emerging field of plasmonics has yielded methods for guiding and localizing light at the nanoscale, well below the scale of the wavelength of light in free space. Now plasmonics researchers are turning their attention to photovoltaics, where design approaches based on plasmonics can be used to improve absorption in photovoltaic devices, permitting a considerable reduction in the physical thickness of solar photovoltaic absorber layers, and yielding new options for solar-cell design. In this review, we survey recent advances at the intersection of plasmonics and photovoltaics and offer an outlook on the future of solar cells based on these principles.

8,028 citations

Journal ArticleDOI
23 Jun 2006-Science
TL;DR: This work shows how electromagnetic fields can be redirected at will and proposes a design strategy that has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.
Abstract: Using the freedom of design that metamaterials provide, we show how electromagnetic fields can be redirected at will and propose a design strategy. The conserved fields-electric displacement field D, magnetic induction field B, and Poynting vector B-are all displaced in a consistent manner. A simple illustration is given of the cloaking of a proscribed volume of space to exclude completely all electromagnetic fields. Our work has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.

7,811 citations