scispace - formally typeset
Search or ask a question
Author

Sheng-Jun Yang

Bio: Sheng-Jun Yang is an academic researcher from University of Science and Technology of China. The author has contributed to research in topics: Quantum entanglement & Photon. The author has an hindex of 9, co-authored 19 publications receiving 515 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an efficient light-matter interface for quantum repeaters was developed by placing Rb atoms optically confined in a 3D lattice in a ring cavity, achieving an initial retrieval efficiency of 76% together with a 1/e lifetime of 0.22 s.
Abstract: An efficient light–matter interface for quantum repeaters is developed. By placing Rb atoms optically confined in a 3D lattice in a ring cavity, an initial retrieval efficiency of 76% together with a 1/e lifetime of 0.22 s are achieved.

180 citations

Journal ArticleDOI
TL;DR: In this paper, a cavity-enhanced spontaneous parametric downconversion source was used for the preparation and storage of frequency-uncorrelated narrowband (5 MHz) entangled photons.
Abstract: Researchers report the preparation and storage of frequency-uncorrelated narrowband (5 MHz) entangled photons from a cavity-enhanced spontaneous parametric downconversion source. Electromagnetically induced transparency was implemented using ultraviolet pump pulses, and the violation of Bell's inequality was clearly observed for storage times of up to 200 ns.

158 citations

Journal ArticleDOI
TL;DR: In this article, the entanglement of three remote quantum memories via three-photon interference was achieved by employing laser-cooled atomic ensembles and making use of a ring cavity to enhance the overall efficiency of the memory.
Abstract: Quantum memory networks as an intermediate stage in the development of a quantum internet1 will enable a number of significant applications2-5. To connect and entangle remote quantum memories, it is best to use photons. In previous experiments6-13, entanglement of two memory nodes has been achieved via photon interference. Going beyond the state of the art by entangling many quantum nodes at a distance is highly sought after. Here, we report the entanglement of three remote quantum memories via three-photon interference. We employ laser-cooled atomic ensembles and make use of a ring cavity to enhance the overall efficiency of our memory–photon entanglement. By interfering three single photons from three separate set-ups, we create entanglement of three memories and three photons. Then, by measuring the photons and applying feed-forward, we achieve heralded entanglement between the three memories. Our experiment may be employed as a building block to construct larger and complex quantum networks14,15. The entanglement of three remote quantum memories based on 87Rb atoms is created via three-photon interference by enhancing the memory–photon entanglement in ring cavities, demonstrating a genuine quantum network involving more than two quantum nodes.

54 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a coherent and reversible storage of biphoton Bell-type entanglement with a holographic multimode atomic-ensemble-based quantum memory.
Abstract: Coherent and reversible storage of multiphoton entanglement with a multimode quantum memory is essential for scalable all-optical quantum information processing. Although a single photon has been successfully stored in different quantum systems, storage of multiphoton entanglement remains challenging because of the critical requirement for coherent control of the photonic entanglement source, multimode quantum memory, and quantum interface between them. Here we demonstrate a coherent and reversible storage of biphoton Bell-type entanglement with a holographic multimode atomic-ensemble-based quantum memory. The retrieved biphoton entanglement violates the Bell inequality for $1\text{ }\text{ }\ensuremath{\mu}\mathrm{s}$ storage time and a memory-process fidelity of 98% is demonstrated by quantum state tomography.

50 citations

Journal ArticleDOI
TL;DR: The Hong-Ou-Mandel interference witnesses an entangled NOON state of the collective atomic excitations, and it is demonstrated its two times enhanced sensitivity to a magnetic field compared with a single excitation.
Abstract: We demonstrate deterministic generation of two distinct collective excitations in one atomic ensemble, and we realize the Hong-Ou-Mandel interference between them. Using Rydberg blockade we create single collective excitations in two different Zeeman levels, and we use stimulated Raman transitions to perform a beam-splitter operation between the excited atomic modes. By converting the atomic excitations into photons, the two-excitation interference is measured by photon coincidence detection with a visibility of 0.89(6). The Hong-Ou-Mandel interference witnesses an entangled NOON state of the collective atomic excitations, and we demonstrate its two times enhanced sensitivity to a magnetic field compared with a single excitation. Our work implements a minimal instance of boson sampling and paves the way for further multimode and multiexcitation studies with collective excitations of atomic ensembles.

47 citations


Cited by
More filters
Journal ArticleDOI
09 Aug 2017-Nature
TL;DR: This work reports the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD—a form ofQKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected.
Abstract: Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD-a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks.

1,216 citations

Journal ArticleDOI
16 Jun 2017-Science
TL;DR: Satellite-based distribution of entangled photon pairs to two locations separated by 1203 kilometers on Earth, through two satellite-to-ground downlinks is demonstrated, with a survival of two-photon entanglement and a violation of Bell inequality.
Abstract: Long-distance entanglement distribution is essential for both foundational tests of quantum physics and scalable quantum networks. Owing to channel loss, however, the previously achieved distance was limited to ~100 kilometers. Here we demonstrate satellite-based distribution of entangled photon pairs to two locations separated by 1203 kilometers on Earth, through two satellite-to-ground downlinks with a summed length varying from 1600 to 2400 kilometers. We observed a survival of two-photon entanglement and a violation of Bell inequality by 2.37 ± 0.09 under strict Einstein locality conditions. The obtained effective link efficiency is orders of magnitude higher than that of the direct bidirectional transmission of the two photons through telecommunication fibers.

917 citations

Journal ArticleDOI
TL;DR: This review gives both sides of the story, with the current best theory of quantum security, and an extensive survey of what makes quantum cryptosystem safe in practice.
Abstract: Some years ago quantum hacking became popular: devices implementing the unbreakable quantum cryptography were shown to have imperfections which could be exploited by attackers. Security has been thoroughly enhanced, as a consequence of both theoretical and experimental advances. This review gives both sides of the story, with the current best theory of quantum security, and an extensive survey of what makes quantum cryptosystem safe in practice.

761 citations

Journal ArticleDOI
07 Sep 2017-Nature
TL;DR: The demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.
Abstract: Quantum teleportation of single-photon qubits from a ground observatory to a satellite in low-Earth orbit via an uplink channel is achieved with a fidelity that is well above the classical limit. The laws of quantum physics give rise to protocols for ultra-secure cryptography and quantum communications. However, to be useful in a global network, these protocols will have to function with satellites. Extending existing protocols to such long distances poses a tremendous experimental challenge. Researchers led by Jian-Wei Pan present a pair of papers in this issue that take steps toward a global quantum network, using the low-Earth-orbit satellite Micius. They demonstrate satellite-to-ground quantum key distribution, an integral part of quantum cryptosystems, at kilohertz rates over 1,200 kilometres, and report quantum teleportation of a single-photon qubit over 1,400 kilometres. Quantum teleportation is the transfer of the exact state of a quantum object from one place to another, without physical travelling of the object itself, and is a central process in many quantum communication protocols. These two experiments suggest that Micius could become the first component in a global quantum internet. An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly1. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances2, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks3,4 and distributed quantum computation5,6. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels7,8,9,10,11,12, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale ‘quantum internet’13 the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit)14. Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.

638 citations

Posted Content
TL;DR: In this article, a satellite-based distribution of entangled photon pairs to two locations separated by 1203 km on the Earth, through satellite-to-ground two-downlink with a sum of length varies from 1600 km to 2400 km.
Abstract: Long-distance entanglement distribution is essential both for foundational tests of quantum physics and scalable quantum networks. Owing to channel loss, however, the previously achieved distance was limited to ~100 km. Here, we demonstrate satellite-based distribution of entangled photon pairs to two locations separated by 1203 km on the Earth, through satellite-to-ground two-downlink with a sum of length varies from 1600 km to 2400 km. We observe a survival of two-photon entanglement and a violation of Bell inequality by 2.37+/-0.09 under strict Einstein locality conditions. The obtained effective link efficiency at 1200 km in this work is over 12 orders of magnitude higher than the direct bidirectional transmission of the two photons through the best commercial telecommunication fibers with a loss of 0.16 dB/km.

513 citations