scispace - formally typeset
Search or ask a question
Author

Sheng-Kai Sun

Bio: Sheng-Kai Sun is an academic researcher from Nanjing Agricultural University. The author has contributed to research in topics: Arsenic contamination of groundwater & Arsenic toxicity. The author has an hindex of 2, co-authored 2 publications receiving 21 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors report the identification of the gain-of-function arsenite tolerant 1 (astol1) mutant of rice that benefits from enhanced sulfur and selenium assimilation, arsenic tolerance, and decreased arsenic accumulation in grains.
Abstract: Rice grains typically contain high levels of toxic arsenic but low levels of the essential micronutrient selenium. Anthropogenic arsenic contamination of paddy soils exacerbates arsenic toxicity in rice crops resulting in substantial yield losses. Here, we report the identification of the gain-of-function arsenite tolerant 1 (astol1) mutant of rice that benefits from enhanced sulfur and selenium assimilation, arsenic tolerance, and decreased arsenic accumulation in grains. The astol1 mutation promotes the physical interaction of the chloroplast-localized O-acetylserine (thiol) lyase protein with its interaction partner serine-acetyltransferase in the cysteine synthase complex. Activation of the serine-acetyltransferase in this complex promotes the uptake of sulfate and selenium and enhances the production of cysteine, glutathione, and phytochelatins, resulting in increased tolerance and decreased translocation of arsenic to grains. Our findings uncover the pivotal sensing-function of the cysteine synthase complex in plastids for optimizing stress resilience and grain quality by regulating a fundamental macronutrient assimilation pathway.

35 citations

Journal ArticleDOI
TL;DR: OsOASTL-A1 is the cytosolic O-acetylserine(thiol) lyase that plays an important role in non-protein thiol biosynthesis in roots for As detoxification in rice.
Abstract: Arsenic (As) contamination in paddy soil can cause phytotoxicity and elevated As accumulation in rice grains. Arsenic detoxification is closely linked to sulfur assimilation, but the genes involved have not been described in rice. In this study, we characterize the function of OASTL-A1, an O-acetylserine(thiol) lyase, in cysteine biosynthesis and detoxification of As in rice. Tissue expression analysis revealed that OsOASTL-A1 is mainly expressed in roots at the vegetative growth stage and in nodes at the reproductive stage. Furthermore, the expression of OsOASTL-A1 in roots was strongly induced by As exposure. Transgenic rice plants expressing pOsOASTL-A1::GUS (β-glucuronidase) indicated that OsOASTL-A1 was strongly expressed in the outer cortex and the vascular cylinder in the root mature zone. Subcellular localization using OsOASTL-A1:eGFP (enhanced green fluorescent protein) fusion protein showed that OsOASTL-A1 was localized to the cytosol. In vivo and in vitro enzyme activity assays showed that OsOASTL-A1 possessed the O-acetylserine(thiol) lyase activity. Knockout of OsOASTL-A1 led to significantly lower levels of cysteine, glutathione, and phytochelatins in roots and increased sensitivity to arsenate stress. Furthermore, the osoastl-a1 knockout mutants reduced As accumulation in the roots, but increased As accumulation in shoots. We conclude that OsOASTL-A1 is the cytosolic O-acetylserine(thiol) lyase that plays an important role in non-protein thiol biosynthesis in roots for As detoxification.

21 citations


Cited by
More filters
Journal Article
TL;DR: The first successful Agrobacterium-mediated transformation of Australian elite rice cultivars, Jarrah and Amaroo, using binary vectors with improved promoters and selectable markers was reported in this paper.
Abstract: We report the first successful Agrobacterium-mediated transformation of Australian elite rice cultivars, Jarrah and Amaroo, using binary vectors with our improved promoters and selectable markers. Calli derived from mature embryos were used as target tissues. The binary vectors contained hph (encoding hygromycin resistance) or bar (encoding herbicide resistance) as the selectable marker gene and uidA (gus) or sgfpS65T as the reporter gene driven by different promoters. Use of Agrobacterium strain AGL1 carrying derivatives of an improved binary vector pWBVec8, wherein the CaMV35S driven hph gene is interrupted by the castor bean catalase 1 intron, produced a 4-fold higher number of independent transgenic lines compared to that produced with the use of strain EHA101 carrying the binary vector pIG121-Hm wherein the CaMV35S driven hph is intronless. The Ubiquitin promoter produced 30-fold higher β-glucuronidase (GUS) activity (derivatives of binary vector pWBVec8) in transgenic plants than the CaMV35S promoter (pIG121-Hm). The two modified SCSV promoters produced GUS activity comparable to that produced by the Ubiquitin promoter. Progeny analysis (R1) for hygromycin resistance and GUS activity with selected lines showed both Mendelian and non-Mendelian segregation. Lines showing very high levels of GUS activity in T0 showed a reduced level of GUS activity in their T1 progeny, while lines with moderate levels of GUS activity showed increased levels in T1 progeny. Stable heritable green fluorescent protein (GFP) expression was also observed in few transgenic plants produced with the binary vector pTO134 which had the CaMV35S promoter-driven selectable marker gene bar and a modified CaMV35S promoter-driven reporter gene sgfpS65T.

96 citations

Journal ArticleDOI
TL;DR: It is reported that excess As causes severe oxidative stress in tea leaves as revealed by significantly reduced maximal photochemical efficiency of photosystem-II, and increased reactive oxygen species accumulation and lipid peroxidation, but exogenous melatonin application alleviated the As phytotoxicity.

87 citations

Journal ArticleDOI
TL;DR: This review discusses the recent advances in the management of iAs in rice plants emphasizing the use of nanotechnology and biotechnology approaches and the prospects and challenges facing these approaches are described.

78 citations

Journal ArticleDOI
TL;DR: In this article, a number of genes involved in toxic metal uptake, transport, and detoxification have been identified, offering targets for genetic manipulation via gene editing or transgenic technologies.

62 citations

Journal ArticleDOI
TL;DR: In this article , a number of genes involved in toxic metal uptake, transport, and detoxification have been identified, offering targets for genetic manipulation via gene editing or transgenic technologies.

62 citations