scispace - formally typeset
Search or ask a question
Author

Sheng-Li Cao

Bio: Sheng-Li Cao is an academic researcher from Capital Normal University. The author has contributed to research in topics: Piperazine & Quinazolinone. The author has an hindex of 11, co-authored 41 publications receiving 660 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A series of 4(3H)-quinazolinone derivatives with dithiocarbamate side chains were synthesized and tested for their in vitro antitumor activity against human myelogenous leukemia K562 cells, and Piperazine-1-carbodithioate 8q exhibited significant inhibitory activity.

325 citations

Journal ArticleDOI
TL;DR: A first methylthio-functionalized porous MOF decorated with Pt co-catalyst for efficient photocatalytic H2 evolution was achieved, which exhibited a high quantum yield and perfect H2 production rate.
Abstract: Recently, the emergence of photoactive metal-organic frameworks (MOFs) has given great prospects for their applications as photocatalytic materials in visible-light-driven hydrogen evolution. Herein, a highly photoactive visible-light-driven material for H2 evolution was prepared by introducing methylthio terephthalate into a MOF lattice via solvent-assisted ligand-exchange method. Accordingly, a first methylthio-functionalized porous MOF decorated with Pt co-catalyst for efficient photocatalytic H2 evolution was achieved, which exhibited a high quantum yield (8.90 %) at 420 nm by use sacrificial triethanolamine. This hybrid material exhibited perfect H2 production rate as high as 3814.0 μmol g-1 h-1 , which even is one order of magnitude higher than that of the state-of-the-art Pt/MOF photocatalyst derived from aminoterephthalate.

154 citations

Journal ArticleDOI
TL;DR: For the first time, group-specific PAE-binding aptamers via rationally designed target immobilization are identified and offered the promise of convenient, low-cost detection of total PAEs.
Abstract: Phthalic acid esters (PAEs) are ubiquitous in the environment, and some of them are recognized as endocrine disruptors that cause concerns on ecosystem functioning and public health. Due to the diversity of PAEs in the environment, there is a vital need to detect the total concentration of PAEs in a timely and low-cost way. To fulfill this requirement, it is highly desired to obtain group-specific PAE binders that are specific to the basic PAE skeleton. In this study, for the first time we have identified the group-specific PAE-binding aptamers via rationally designed target immobilization. The two target immobilization strategies were adopted to display either the phthalic ester group or the alkyl chain, respectively, at the surface of the immobilization matrix. The former enabled the rapid enrichment of aptamers after four rounds of selection. The top 100 sequences are cytosine-rich (44.7%) and differentiate from each other by only 1–4 nucleotides at limited locations. The top two aptamers all display t...

48 citations

Journal ArticleDOI
TL;DR: Investigations revealed that compounds 8f, 8m and 8q exhibited weak inhibition against dihydrofolate reductase and no activity against thymidylate synthase, while induced DNA damage and activated the G2/M checkpoint in HCT-116 cells.

45 citations

Journal ArticleDOI
TL;DR: A series of indolin-2-one derivatives bearing 4-phenylpiperazine-1-carbothiohydrazide moiety at the C3-position were synthesized and evaluated for their antiproliferative activity against three human cancer cell lines.

34 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review first briefly summarizes this background of MOF nanoparticle catalysis and then comprehensively reviews the fast-growing literature reported during the last years.
Abstract: Metal-organic framework (MOF) nanoparticles, also called porous coordination polymers, are a major part of nanomaterials science, and their role in catalysis is becoming central. The extraordinary variability and richness of their structures afford engineering synergies between the metal nodes, functional linkers, encapsulated substrates, or nanoparticles for multiple and selective heterogeneous interactions and activations in these MOF-based nanocatalysts. Pyrolysis of MOF-nanoparticle composites forms highly porous N- or P-doped graphitized MOF-derived nanomaterials that are increasingly used as efficient catalysts especially in electro- and photocatalysis. This review first briefly summarizes this background of MOF nanoparticle catalysis and then comprehensively reviews the fast-growing literature reported during the last years. The major parts are catalysis of organic and molecular reactions, electrocatalysis, photocatalysis, and views of prospects. Major challenges of our society are addressed using these well-defined heterogeneous catalysts in the fields of synthesis, energy, and environment. In spite of the many achievements, enormous progress is still necessary to improve our understanding of the processes involved beyond the proof-of-concept, particularly for selective methane oxidation, hydrogen production, water splitting, CO2 reduction to methanol, nitrogen fixation, and water depollution.

1,233 citations

Journal ArticleDOI
TL;DR: In this review, the recent advances in the application of MOFs in heterogeneous catalysis are discussed and the personal view on future research directions is wrapped up.
Abstract: More than 95% (in volume) of all of today’s chemical products are manufactured through catalytic processes, making research into more efficient catalytic materials a thrilling and very dynamic rese...

772 citations

Journal ArticleDOI
TL;DR: Ionic Liquids Presented in This Review 2020 3.1.
Abstract: 2.5. Ionic Liquids Presented in This Review 2020 3. Cyclocondensation Reactions 2020 4. Synthesis of Three-Membered Heterocycles 2022 4.1. Aziridines 2022 5. Synthesis of Five-Membered Heterocycles 2022 5.1. Pyrroles 2022 5.2. Furans 2022 5.3. Thiophenes 2023 5.4. Pyrazoles 2024 5.5. Imidazoles 2025 5.6. Isoxazoles 2027 5.7. Oxazoles, Oxazolines, and Oxazolidinones 2027 5.8. Thiazoles and Thiazolidinones 2028 6. Synthesis of Six-Membered Heterocycles 2030 6.1. Pyridines 2030 6.2. Quinolines 2031 6.3. Acridines 2033 6.4. Pyrans 2033 6.5. Flavones 2035 6.6. Pyrimidines and Pyrimidinones 2035 6.7. Quinazolines 2037 6.8. -Carbolines 2038 6.9. Dioxanes 2039 6.10. Oxazines 2039 6.11. Benzothiazines 2040 6.12. Triazines 2040 7. Synthesis of Seven-Membered Heterocycles: Diazepines 2041

631 citations

Journal ArticleDOI
TL;DR: An up-to-date summary of the structural and physical properties of metal-organic frameworks can be found in this article, where the structure-property relationships of MOFs are discussed.

498 citations

Journal ArticleDOI
TL;DR: 2D surfactant-stabilized coordination strategy is used to make two-dimensional single-atom catalysts that exhibit a record-high photocatalytic H2 evolution rate and can be readily drop-casted onto solid substrates, forming thin films while still retaining their photocatalyst activity, which is highly desirable for practical solar H2 production.
Abstract: A surfactant-stabilized coordination strategy is used to make two-dimensional (2D) single-atom catalysts (SACs) with an ultrahigh Pt loading of 12.0 wt %, by assembly of pre-formed single Pt atom coordinated porphyrin precursors into free-standing metal-organic framework (MOF) nanosheets with an ultrathin thickness of 2.4±0.9 nm. This is the first example of 2D MOF-based SACs. Remarkably, the 2D SACs exhibit a record-high photocatalytic H2 evolution rate of 11 320 μmol g-1 h-1 via water splitting under visible light irradiation (λ>420 nm) compared with those of reported MOF-based photocatalysts. Moreover, the MOF nanosheets can be readily drop-casted onto solid substrates, forming thin films while still retaining their photocatalytic activity, which is highly desirable for practical solar H2 production.

367 citations