scispace - formally typeset
Search or ask a question
Author

Sheng Zhou

Bio: Sheng Zhou is an academic researcher from Chinese Center for Disease Control and Prevention. The author has contributed to research in topics: Malaria & Population. The author has an hindex of 12, co-authored 19 publications receiving 730 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: LPM closures were effective in the control of human risk of avian influenza A H7N9 virus infection in the spring of 2013 and should be rapidly implemented in areas where the virus is identified in live poultry or people.

258 citations

Journal ArticleDOI
TL;DR: Using newly assembled data sets of the locations of 8,943 live-poultry markets in China and maps of environmental correlates, a statistical model is developed that accurately predicts the risk of H7N9 market infection across Asia.
Abstract: Two epidemic waves of an avian influenza A (H7N9) virus have so far affected China. Most human cases have been attributable to poultry exposure at live-poultry markets, where most positive isolates were sampled. The potential geographic extent of potential re-emerging epidemics is unknown, as are the factors associated with it. Using newly assembled data sets of the locations of 8,943 live-poultry markets in China and maps of environmental correlates, we develop a statistical model that accurately predicts the risk of H7N9 market infection across Asia. Local density of live-poultry markets is the most important predictor of H7N9 infection risk in markets, underscoring their key role in the spatial epidemiology of H7N9, alongside other poultry, land cover and anthropogenic predictor variables. Identification of areas in Asia with high suitability for H7N9 infection enhances our capacity to target biosurveillance and control, helping to restrict the spread of this important disease.

147 citations

Journal ArticleDOI
TL;DR: Malaria incidence in general reduced greatly in China, while the proportion of Plasmodium falciparum increased threefold from 0.08 to 0.21 per 100,000 population during the period 2010–2014.
Abstract: Background To describe the epidemiologic profile and trends of imported malaria, and to identify the populations at risk of malaria in China during 2010–2014.

76 citations

Journal ArticleDOI
TL;DR: China is on the verge of malaria elimination, but the residual transmission in border regions and the threats of importation from Africa and Southeast Asia are the key challenges to achieve and maintain malaria elimination.
Abstract: Historically, malaria had been a widespread disease in China. A national plan was launched in China in 2010, aiming to eliminate malaria by 2020. In 2017, no indigenous cases of malaria were detected in China for the first time. To provide evidence for precise surveillance and response to achieve elimination goal, a comprehensive study is needed to determine the changing epidemiology of malaria and the challenges towards elimination. Using malaria surveillance data from 2011 to 2016, an integrated series of analyses was conducted to elucidate the changing epidemiological features of autochthonous and imported malaria, and the spatiotemporal patterns of malaria importation from endemic countries. From 2011 to 2016, a total of 21,062 malaria cases with 138 deaths were reported, including 91% were imported and 9% were autochthonous. The geographic distribution of local transmission have shrunk dramatically, but there were still more than 10 counties reporting autochthonous cases in 2013–2016, particularly in counties bordering with countries in South-East Asia. The importation from 68 origins countries had an increasing annual trend from Africa but decreasing importation from Southeast Asia. Four distinct communities have been identified in the importation networks with the destinations in China varied by origin and species. China is on the verge of malaria elimination, but the residual transmission in border regions and the threats of importation from Africa and Southeast Asia are the key challenges to achieve and maintain malaria elimination. Efforts from China are also needed to help malaria control in origin countries and reduce the risk of introduced transmission.

60 citations

Journal ArticleDOI
TL;DR: Imported malaria infections among Chinese labourers, returned from various countries, poses an increasing challenge to the malaria elimination programme in China.
Abstract: With the dramatic increase in international travel among Chinese people, the risk of malaria importation from malaria-endemic regions threatens the achievement of the malaria elimination goal of China. Epidemiological investigations of all imported malaria cases were conducted in nine provinces of China from 1 Nov, 2013 to 30 Oct, 2014. Plasmodium species, spatiotemporal distribution, clinical severity, preventive measures and infection history of the imported malaria cases were analysed using descriptive statistics. A total of 1420 imported malaria cases were recorded during the study period, with P. falciparum (723 cases, 50.9 %) and P. vivax (629 cases, 44.3 %) being the two predominant species. Among them, 81.8 % of cases were in Chinese overseas labourers. The imported cases returned from 41 countries, mainly located in Africa (58.9 %) and Southeast Asia (39.4 %). About a quarter (25.5 %, 279/1094) of counties in the nine study provinces were affected by imported malaria cases. There were 112 cases (7.9 %) developing complicated malaria, including 12 deaths (case fatality rate: 0.8 %). Only 27.8 % of the imported cases had taken prophylactic anti-malarial drugs. While staying abroad, 27.7 % of the cases had experienced two or more episodes of malaria infection. The awareness of clinical manifestations and the capacity for malaria diagnosis were weak in private clinics and primary healthcare facilities. Imported malaria infections among Chinese labourers, returned from various countries, poses an increasing challenge to the malaria elimination programme in China. The risk of potential re-introduction of malaria into inland malaria-free areas of China should be urgently addressed.

56 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This study demonstrates how data collected by mobile phone network operators can cost-effectively provide accurate and detailed maps of population distribution over national scales and any time period while guaranteeing phone users’ privacy.
Abstract: During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography.

732 citations

Journal ArticleDOI
TL;DR: SARS-CoV-2 itself is not a recombinant of any sarbecoviruses detected to date, and its receptor-binding motif appears to be an ancestral trait shared with bat viruses and not one acquired recently via recombination.
Abstract: There are outstanding evolutionary questions on the recent emergence of human coronavirus SARS-CoV-2 including the role of reservoir species, the role of recombination and its time of divergence from animal viruses. We find that the sarbecoviruses—the viral subgenus containing SARS-CoV and SARS-CoV-2—undergo frequent recombination and exhibit spatially structured genetic diversity on a regional scale in China. SARS-CoV-2 itself is not a recombinant of any sarbecoviruses detected to date, and its receptor-binding motif, important for specificity to human ACE2 receptors, appears to be an ancestral trait shared with bat viruses and not one acquired recently via recombination. To employ phylogenetic dating methods, recombinant regions of a 68-genome sarbecovirus alignment were removed with three independent methods. Bayesian evolutionary rate and divergence date estimates were shown to be consistent for these three approaches and for two different prior specifications of evolutionary rates based on HCoV-OC43 and MERS-CoV. Divergence dates between SARS-CoV-2 and the bat sarbecovirus reservoir were estimated as 1948 (95% highest posterior density (HPD): 1879–1999), 1969 (95% HPD: 1930–2000) and 1982 (95% HPD: 1948–2009), indicating that the lineage giving rise to SARS-CoV-2 has been circulating unnoticed in bats for decades. In this manuscript, the authors address evolutionary questions on the emergence of SARS-CoV-2. They find that SARS-CoV-2 is not a recombinant of any sarbecoviruses detected to date, and that the bat and pangolin sequences most closely related to SARS-CoV-2 probably diverged several decades ago or possibly earlier from human SARS-CoV-2 samples.

716 citations

Journal ArticleDOI
TL;DR: The estimates suggest that melioidosis is severely underreported in the 45 countries in which it is known to be endemic and that it is probably endemic in a further 34 countries that have never reported the disease.
Abstract: Burkholderia pseudomallei, a highly pathogenic bacterium that causes melioidosis, is commonly found in soil in Southeast Asia and Northern Australia1,2. Melioidosis can be difficult to diagnose due to its diverse clinical manifestations and the inadequacy of conventional bacterial identification methods3. The bacterium is intrinsically resistant to a wide range of antimicrobials, and treatment with ineffective antimicrobials may result in case fatality rates (CFRs) exceeding 70%4,5. The importation of infected animals has, in the past, spread melioidosis to non-endemic areas6,7. The global distribution of B. pseudomallei and burden of melioidosis, however, remain poorly understood. Here, we map documented human and animal cases, and the presence of environmental B. pseudomallei, and combine this in a formal modelling framework8-10 to estimate the global burden of melioidosis. We estimate there to be 165,000 (95% credible interval 68,000-412,000) human melioidosis cases per year worldwide, of which 89,000 (36,000-227,000) die. Our estimates suggest that melioidosis is severely underreported in the 45 countries in which it is known to be endemic and that melioidosis is likely endemic in a further 34 countries which have never reported the disease. The large numbers of estimated cases and fatalities emphasise that the disease warrants renewed attention from public health officials and policy makers.

653 citations

Journal ArticleDOI
10 Jan 2018-Nature
TL;DR: A map that quantifies travel time to cities for 2015 at a spatial resolution of approximately one by one kilometre is developed and validated and it is demonstrated how access to urban centres stratifies the economic, educational, and health status of humanity.
Abstract: The economic and man-made resources that sustain human wellbeing are not distributed evenly across the world, but are instead heavily concentrated in cities. Poor access to opportunities and services offered by urban centres (a function of distance, transport infrastructure, and the spatial distribution of cities) is a major barrier to improved livelihoods and overall development. Advancing accessibility worldwide underpins the equity agenda of 'leaving no one behind' established by the Sustainable Development Goals of the United Nations. This has renewed international efforts to accurately measure accessibility and generate a metric that can inform the design and implementation of development policies. The only previous attempt to reliably map accessibility worldwide, which was published nearly a decade ago, predated the baseline for the Sustainable Development Goals and excluded the recent expansion in infrastructure networks, particularly in lower-resource settings. In parallel, new data sources provided by Open Street Map and Google now capture transportation networks with unprecedented detail and precision. Here we develop and validate a map that quantifies travel time to cities for 2015 at a spatial resolution of approximately one by one kilometre by integrating ten global-scale surfaces that characterize factors affecting human movement rates and 13,840 high-density urban centres within an established geospatial-modelling framework. Our results highlight disparities in accessibility relative to wealth as 50.9% of individuals living in low-income settings (concentrated in sub-Saharan Africa) reside within an hour of a city compared to 90.7% of individuals in high-income settings. By further triangulating this map against socioeconomic datasets, we demonstrate how access to urban centres stratifies the economic, educational, and health status of humanity.

632 citations