scispace - formally typeset
Search or ask a question
Author

Shenlong Wang

Bio: Shenlong Wang is an academic researcher from Uber . The author has contributed to research in topics: Computer science & Lidar. The author has an hindex of 27, co-authored 85 publications receiving 3660 citations. Previous affiliations of Shenlong Wang include Hong Kong Polytechnic University & University of Toronto.

Papers published on a yearly basis

Papers
More filters
Book ChapterDOI
08 Sep 2018
TL;DR: This paper proposes a novel 3D object detector that can exploit both LIDAR as well as cameras to perform very accurate localization and designs an end-to-end learnable architecture that exploits continuous convolutions to fuse image and LIDar feature maps at different levels of resolution.
Abstract: In this paper, we propose a novel 3D object detector that can exploit both LIDAR as well as cameras to perform very accurate localization. Towards this goal, we design an end-to-end learnable architecture that exploits continuous convolutions to fuse image and LIDAR feature maps at different levels of resolution. Our proposed continuous fusion layer encode both discrete-state image features as well as continuous geometric information. This enables us to design a novel, reliable and efficient end-to-end learnable 3D object detector based on multiple sensors. Our experimental evaluation on both KITTI as well as a large scale 3D object detection benchmark shows significant improvements over the state of the art.

708 citations

Proceedings ArticleDOI
16 Jun 2012
TL;DR: The proposed semi-coupled dictionary learning (SCDL) model is applied to image super-resolution and photo-sketch synthesis, and the experimental results validated its generality and effectiveness in cross-style image synthesis.
Abstract: In various computer vision applications, often we need to convert an image in one style into another style for better visualization, interpretation and recognition; for examples, up-convert a low resolution image to a high resolution one, and convert a face sketch into a photo for matching, etc. A semi-coupled dictionary learning (SCDL) model is proposed in this paper to solve such cross-style image synthesis problems. Under SCDL, a pair of dictionaries and a mapping function will be simultaneously learned. The dictionary pair can well characterize the structural domains of the two styles of images, while the mapping function can reveal the intrinsic relationship between the two styles' domains. In SCDL, the two dictionaries will not be fully coupled, and hence much flexibility can be given to the mapping function for an accurate conversion across styles. Moreover, clustering and image nonlocal redundancy are introduced to enhance the robustness of SCDL. The proposed SCDL model is applied to image super-resolution and photo-sketch synthesis, and the experimental results validated its generality and effectiveness in cross-style image synthesis.

573 citations

Proceedings ArticleDOI
16 Oct 2016
TL;DR: This paper demonstrates high-quality, real-time 3D reconstructions of an entire space, including people, furniture and objects, using a set of new depth cameras, and allows users wearing virtual or augmented reality displays to see, hear and interact with remote participants in 3D, almost as if they were present in the same physical space.
Abstract: We present an end-to-end system for augmented and virtual reality telepresence, called Holoportation. Our system demonstrates high-quality, real-time 3D reconstructions of an entire space, including people, furniture and objects, using a set of new depth cameras. These 3D models can also be transmitted in real-time to remote users. This allows users wearing virtual or augmented reality displays to see, hear and interact with remote participants in 3D, almost as if they were present in the same physical space. From an audio-visual perspective, communicating and interacting with remote users edges closer to face-to-face communication. This paper describes the Holoportation technical system in full, its key interactive capabilities, the application scenarios it enables, and an initial qualitative study of using this new communication medium.

543 citations

Proceedings ArticleDOI
01 Jun 2018
TL;DR: The key idea is to exploit parameterized kernel functions that span the full continuous vector space, which allows us to learn over arbitrary data structures as long as their support relationship is computable.
Abstract: Standard convolutional neural networks assume a grid structured input is available and exploit discrete convolutions as their fundamental building blocks. This limits their applicability to many real-world applications. In this paper we propose Parametric Continuous Convolution, a new learnable operator that operates over non-grid structured data. The key idea is to exploit parameterized kernel functions that span the full continuous vector space. This generalization allows us to learn over arbitrary data structures as long as their support relationship is computable. Our experiments show significant improvement over the state-of-the-art in point cloud segmentation of indoor and outdoor scenes, and lidar motion estimation of driving scenes.

392 citations

Proceedings ArticleDOI
16 Jun 2012
TL;DR: A novel relaxed collaborative representation (RCR) model to effectively exploit the similarity and distinctiveness of features and is very competitive with state-of-the-art image classification methods.
Abstract: Regularized linear representation learning has led to interesting results in image classification, while how the object should be represented is a critical issue to be investigated. Considering the fact that the different features in a sample should contribute differently to the pattern representation and classification, in this paper we present a novel relaxed collaborative representation (RCR) model to effectively exploit the similarity and distinctiveness of features. In RCR, each feature vector is coded on its associated dictionary to allow flexibility of feature coding, while the variance of coding vectors is minimized to address the similarity among features. In addition, the distinctiveness of different features is exploited by weighting its distance to other features in the coding domain. The proposed RCR is simple, while our extensive experimental results on benchmark image databases (e.g., various face and flower databases) show that it is very competitive with state-of-the-art image classification methods.

219 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: This paper presents the first convolutional neural network capable of real-time SR of 1080p videos on a single K2 GPU and introduces an efficient sub-pixel convolution layer which learns an array of upscaling filters to upscale the final LR feature maps into the HR output.
Abstract: Recently, several models based on deep neural networks have achieved great success in terms of both reconstruction accuracy and computational performance for single image super-resolution. In these methods, the low resolution (LR) input image is upscaled to the high resolution (HR) space using a single filter, commonly bicubic interpolation, before reconstruction. This means that the super-resolution (SR) operation is performed in HR space. We demonstrate that this is sub-optimal and adds computational complexity. In this paper, we present the first convolutional neural network (CNN) capable of real-time SR of 1080p videos on a single K2 GPU. To achieve this, we propose a novel CNN architecture where the feature maps are extracted in the LR space. In addition, we introduce an efficient sub-pixel convolution layer which learns an array of upscaling filters to upscale the final LR feature maps into the HR output. By doing so, we effectively replace the handcrafted bicubic filter in the SR pipeline with more complex upscaling filters specifically trained for each feature map, whilst also reducing the computational complexity of the overall SR operation. We evaluate the proposed approach using images and videos from publicly available datasets and show that it performs significantly better (+0.15dB on Images and +0.39dB on Videos) and is an order of magnitude faster than previous CNN-based methods.

4,770 citations

Journal ArticleDOI
TL;DR: This work proposes a new neural network module suitable for CNN-based high-level tasks on point clouds, including classification and segmentation called EdgeConv, which acts on graphs dynamically computed in each layer of the network.
Abstract: Point clouds provide a flexible geometric representation suitable for countless applications in computer graphics; they also comprise the raw output of most 3D data acquisition devices. While hand-designed features on point clouds have long been proposed in graphics and vision, however, the recent overwhelming success of convolutional neural networks (CNNs) for image analysis suggests the value of adapting insight from CNN to the point cloud world. Point clouds inherently lack topological information, so designing a model to recover topology can enrich the representation power of point clouds. To this end, we propose a new neural network module dubbed EdgeConv suitable for CNN-based high-level tasks on point clouds, including classification and segmentation. EdgeConv acts on graphs dynamically computed in each layer of the network. It is differentiable and can be plugged into existing architectures. Compared to existing modules operating in extrinsic space or treating each point independently, EdgeConv has several appealing properties: It incorporates local neighborhood information; it can be stacked applied to learn global shape properties; and in multi-layer systems affinity in feature space captures semantic characteristics over potentially long distances in the original embedding. We show the performance of our model on standard benchmarks, including ModelNet40, ShapeNetPart, and S3DIS.

3,727 citations

Journal ArticleDOI
TL;DR: The challenges of using deep learning for remote-sensing data analysis are analyzed, recent advances are reviewed, and resources are provided that hope will make deep learning in remote sensing seem ridiculously simple.
Abstract: Central to the looming paradigm shift toward data-intensive science, machine-learning techniques are becoming increasingly important. In particular, deep learning has proven to be both a major breakthrough and an extremely powerful tool in many fields. Shall we embrace deep learning as the key to everything? Or should we resist a black-box solution? These are controversial issues within the remote-sensing community. In this article, we analyze the challenges of using deep learning for remote-sensing data analysis, review recent advances, and provide resources we hope will make deep learning in remote sensing seem ridiculously simple. More importantly, we encourage remote-sensing scientists to bring their expertise into deep learning and use it as an implicit general model to tackle unprecedented, large-scale, influential challenges, such as climate change and urbanization.

2,095 citations

Posted Content
TL;DR: nuScenes as mentioned in this paper is the first dataset to carry the full autonomous vehicle sensor suite: 6 cameras, 5 radars and 1 lidar, all with full 360 degree field of view.
Abstract: Robust detection and tracking of objects is crucial for the deployment of autonomous vehicle technology. Image based benchmark datasets have driven development in computer vision tasks such as object detection, tracking and segmentation of agents in the environment. Most autonomous vehicles, however, carry a combination of cameras and range sensors such as lidar and radar. As machine learning based methods for detection and tracking become more prevalent, there is a need to train and evaluate such methods on datasets containing range sensor data along with images. In this work we present nuTonomy scenes (nuScenes), the first dataset to carry the full autonomous vehicle sensor suite: 6 cameras, 5 radars and 1 lidar, all with full 360 degree field of view. nuScenes comprises 1000 scenes, each 20s long and fully annotated with 3D bounding boxes for 23 classes and 8 attributes. It has 7x as many annotations and 100x as many images as the pioneering KITTI dataset. We define novel 3D detection and tracking metrics. We also provide careful dataset analysis as well as baselines for lidar and image based detection and tracking. Data, development kit and more information are available online.

1,939 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: Experimental results clearly show that the proposed WNNM algorithm outperforms many state-of-the-art denoising algorithms such as BM3D in terms of both quantitative measure and visual perception quality.
Abstract: As a convex relaxation of the low rank matrix factorization problem, the nuclear norm minimization has been attracting significant research interest in recent years. The standard nuclear norm minimization regularizes each singular value equally to pursue the convexity of the objective function. However, this greatly restricts its capability and flexibility in dealing with many practical problems (e.g., denoising), where the singular values have clear physical meanings and should be treated differently. In this paper we study the weighted nuclear norm minimization (WNNM) problem, where the singular values are assigned different weights. The solutions of the WNNM problem are analyzed under different weighting conditions. We then apply the proposed WNNM algorithm to image denoising by exploiting the image nonlocal self-similarity. Experimental results clearly show that the proposed WNNM algorithm outperforms many state-of-the-art denoising algorithms such as BM3D in terms of both quantitative measure and visual perception quality.

1,876 citations