scispace - formally typeset
Search or ask a question
Author

Sheu Ran Choi

Bio: Sheu Ran Choi is an academic researcher from Seoul National University. The author has contributed to research in topics: Neuropathic pain & Astrocyte. The author has an hindex of 14, co-authored 27 publications receiving 522 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The role of NO is examined in this process, as it plays a critical role in PKC‐mediated calcium signalling and the potentiation of NMDA receptor function.
Abstract: BACKGROUND AND PURPOSE We recently demonstrated that activation of the spinal sigma-1 receptor induces mechanical and thermal hypersensitivity via calcium-dependent second messenger cascades and phosphorylation of the spinal NMDA receptor GluN1 subunit (pGluN1). Here we examined the role of NO in this process, as it plays a critical role in PKC-mediated calcium signalling and the potentiation of NMDA receptor function.

60 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the spinal sigma non‐opioid intracellular receptor 1 (σ1 receptor) modulates p38 MAPK phosphorylation (p‐p38), which plays a critical role in the induction of MA in neuropathic rats.
Abstract: Background and Purpose Spinal astrocytes have emerged as important mechanistic contributors to the genesis of mechanical allodynia (MA) in neuropathic pain. We recently demonstrated that the spinal sigma non-opioid intracellular receptor 1 (σ1 receptor) modulates p38 MAPK phosphorylation (p-p38), which plays a critical role in the induction of MA in neuropathic rats. However, the histological and physiological relationships among σ1, p-p38 and astrocyte activation is unclear.

53 citations

Journal ArticleDOI
TL;DR: It is demonstrated that spinal Sig-1Rs modulate Nox2 activation and ROS production in the spinal cord, and ultimately contribute to the Sig- 1R-induced pain hypersensitivity and the peripheral nerve injury-induced induction of chronic neuropathic pain.

49 citations

Journal ArticleDOI
01 Jan 2015-Pain
TL;DR: Results suggest that spinal IL-1&bgr; derived from activated microglia temporarily suppresses astrocyte activation, which can ultimately prevent the development of contralateral MA under inflammatory conditions, and imply that microglial IL- 1&b gr; plays an important role in regulating the induction of inflammatory MIP.
Abstract: Damage on one side of the body can also result in pain on the contralateral unaffected side, called mirror-image pain (MIP). Currently, the mechanisms responsible for the development of MIP are unknown. In this study, we investigated the involvement of spinal microglia and interleukin-1β (IL-1β) in the development of MIP using a peripheral inflammatory pain model. After unilateral carrageenan injection, mechanical allodynia (MA) in both hind paws and the expression levels of spinal Iba-1, IL-1β, and GFAP were evaluated. Ipsilateral MA was induced beginning at 3 hours after carrageenan injection, whereas contralateral MA showed a delayed onset occurring 5 days after injection. A single intrathecal (i.t.) injection of minocycline, a tetracycline derivative that displays selective inhibition of microglial activation, or an interleukin-1 receptor antagonist (IL-1ra) on the day of carrageenan injection caused an early temporary induction of contralateral MA, whereas repeated i.t. treatment with these drugs from days 0 to 3 resulted in a long-lasting contralateral MA, which was evident in its advanced development. We further showed that IL-1β was localized to microglia and that minocycline inhibited the carrageenan-induced increases in spinal Iba-1 and IL-1β expression. Conversely, minocycline or IL-1ra pretreatment increased GFAP expression as compared with that of control rats. However, i.t. pretreatment with fluorocitrate, an astrocyte inhibitor, restored minocycline- or IL-1ra-induced contralateral MA. These results suggest that spinal IL-1β derived from activated microglia temporarily suppresses astrocyte activation, which can ultimately prevent the development of contralateral MA under inflammatory conditions. These findings imply that microglial IL-1β plays an important role in regulating the induction of inflammatory MIP.

46 citations

Journal ArticleDOI
TL;DR: Data demonstrate a sequential role for P2Y1R, p38 MAPK and TRPV1 in inflammation-induced thermal hyperalgesia; thus, peripheral P2y1Rs activation modulates p38MAPK signaling and TRpV1 expression, which ultimately leads to the induction of thermal hyperAlgesia.

38 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Abstract: Purinergic signalling, i.e. the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990’s when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes 4 subtypes of the P1 (adenosine) receptor, 7 subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventicular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson’s disease. Clopidogrel, a P2Y¬12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y¬12 receptor-mediated platelet aggregation. Diquafasol, a long acting P2Y¬2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes and cancer.

279 citations

Journal ArticleDOI
TL;DR: Evidence is sought for PNS and CNS independently generating neuropathic pain signals and the possibility of standalone central contributions to pNP may be assisted by a reconsideration of the agreed terms or criteria for diagnosing the presence of central sensitization.
Abstract: Our goal is to examine the processes—both central and peripheral—that underlie the development of peripherally-induced neuropathic pain (pNP) and to highlight recent evidence for mechanisms contributing to its maintenance. While many pNP conditions are initiated by damage to the peripheral nervous system (PNS), their persistence appears to rely on maladaptive processes within the central nervous system (CNS). The potential existence of an autonomous pain-generating mechanism in the CNS creates significant implications for the development of new neuropathic pain treatments; thus, work towards its resolution is crucial. Here, we seek to identify evidence for PNS and CNS independently generating neuropathic pain signals. Recent preclinical studies in pNP support and provide key details concerning the role of multiple mechanisms leading to fiber hyperexcitability and sustained electrical discharge to the CNS. In studies regarding central mechanisms, new preclinical evidence includes the mapping of novel inhibitory circuitry and identification of the molecular basis of microglia-neuron crosstalk. Recent clinical evidence demonstrates the essential role of peripheral mechanisms, mostly via studies that block the initially damaged peripheral circuitry. Clinical central mechanism studies use imaging to identify potentially self-sustaining infra-slow CNS oscillatory activity that may be unique to pNP patients. While new preclinical evidence supports and expands upon the key role of central mechanisms in neuropathic pain, clinical evidence for an autonomous central mechanism remains relatively limited. Recent findings from both preclinical and clinical studies recapitulate the critical contribution of peripheral input to maintenance of neuropathic pain. Further clinical investigations on the possibility of standalone central contributions to pNP may be assisted by a reconsideration of the agreed terms or criteria for diagnosing the presence of central sensitization in humans.

258 citations

Journal ArticleDOI
TL;DR: This work proposes that Sig-1R is a pluripotent modulator with resultant multiple functional manifestations in living systems and investigates its role in central nervous system diseases.

230 citations

Journal ArticleDOI
TL;DR: Physiological and pathophysiological studies with cell-type-specific knock-out mice will be necessary to delineate the precise functions of NOX enzymes and their implications in pathomechanisms, and the development of CNS-permeant, specific NOX inhibitors will be needed to advance toward therapeutic applications.
Abstract: Significance: There is increasing evidence that the generation of reactive oxygen species (ROS) in the central nervous system (CNS) involves the NOX family of nicotinamide adenine dinucleotide phosphate oxidases. Controlled ROS generation appears necessary for optimal functioning of the CNS through fine-tuning of redox-sensitive signaling pathways, while overshooting ROS generation will lead to oxidative stress and CNS disease. Recent Advances: NOX enzymes are not only restricted to microglia (i.e. brain phagocytes) but also expressed in neurons, astrocytes, and the neurovascular system. NOX enzymes are involved in CNS development, neural stem cell biology, and the function of mature neurons. While NOX2 appears to be a major source of pathological oxidative stress in the CNS, other NOX isoforms might also be of importance, for example, NOX4 in stroke. Globally speaking, there is now convincing evidence for a role of NOX enzymes in various neurodegenerative diseases, cerebrovascular diseases, and ...

222 citations

Book ChapterDOI
TL;DR: A review of purinergic mechanosensory transduction involved in visceral, cutaneous, and musculoskeletal nociception and on the roles played by receptor subtypes in neuropathic and inflammatory pain is given in this article.
Abstract: There is a brief introductory summary of purinergic signaling involving ATP storage, release, and ectoenzymatic breakdown, and the current classification of receptor subtypes for purines and pyrimidines. The review then describes purinergic mechanosensory transduction involved in visceral, cutaneous, and musculoskeletal nociception and on the roles played by receptor subtypes in neuropathic and inflammatory pain. Multiple purinoceptor subtypes are involved in pain pathways both as an initiator and modulator. Activation of homomeric P2X3 receptors contributes to acute nociception and activation of heteromeric P2X2/3 receptors appears to modulate longer-lasting nociceptive sensitivity associated with nerve injury or chronic inflammation. In neuropathic pain activation of P2X4, P2X7, and P2Y12 receptors on microglia may serve to maintain nociceptive sensitivity through complex neural-glial cell interactions and antagonists to these receptors reduce neuropathic pain. Potential therapeutic approaches involving purinergic mechanisms will be discussed.

140 citations