scispace - formally typeset
Search or ask a question
Author

Shi Ning Deng

Bio: Shi Ning Deng is an academic researcher from Shanghai Jiao Tong University. The author has contributed to research in topics: Synaptic scaling & Synaptic fatigue. The author has an hindex of 1, co-authored 1 publications receiving 34 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is found that genetic deletion or pharmacological blockade of ASIC1a greatly reduced, but did not fully abolish, the probability of long-term potentiation (LTP) induction by either single or repeated high frequency stimulation or theta burst stimulation in the CA1 region.
Abstract: The exact roles of acid-sensing ion channels (ASICs) in synaptic plasticity remain elusive. Here, we address the contribution of ASIC1a to five forms of synaptic plasticity in the mouse hippocampus using an in vitro multi-electrode array recording system. We found that genetic deletion or pharmacological blockade of ASIC1a greatly reduced, but did not fully abolish, the probability of long-term potentiation (LTP) induction by either single or repeated high frequency stimulation or theta burst stimulation in the CA1 region. However, these treatments did not affect hippocampal long-term depression induced by low frequency electrical stimulation or (RS)-3,5-dihydroxyphenylglycine. We also show that ASIC1a exerts its action in hippocampal LTP through multiple mechanisms that include but are not limited to augmentation of NMDA receptor function. Taken together, these results reveal new insights into the role of ASIC1a in hippocampal synaptic plasticity and the underlying mechanisms. This unbiased study also demonstrates a novel and objective way to assay synaptic plasticity mechanisms in the brain.

39 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The origin and nature of pH changes in the brain and the involvement of ASICs in synaptic signalling are discussed, exposing how in the peripheral nervous system, ASICs cover together with other ion channels a wide pH range as proton sensors.
Abstract: Acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC) are both members of the ENaC/degenerin family of amiloride-sensitive Na(+) channels. ASICs act as proton sensors in the nervous system where they contribute, besides other roles, to fear behaviour, learning and pain sensation. ENaC mediates Na(+) reabsorption across epithelia of the distal kidney and colon and of the airways. ENaC is a clinically used drug target in the context of hypertension and cystic fibrosis, while ASIC is an interesting potential target. Following a brief introduction, here we will review selected aspects of ASIC and ENaC function. We discuss the origin and nature of pH changes in the brain and the involvement of ASICs in synaptic signalling. We expose how in the peripheral nervous system, ASICs cover together with other ion channels a wide pH range as proton sensors. We introduce the mechanisms of aldosterone-dependent ENaC regulation and the evidence for an aldosterone-independent control of ENaC activity, such as regulation by dietary K(+) . We then provide an overview of the regulation of ENaC by proteases, a topic of increasing interest over the past few years. In spite of the profound differences in the physiological and pathological roles of ASICs and ENaC, these channels share many basic functional and structural properties. It is likely that further research will identify physiological contexts in which ASICs and ENaC have similar or overlapping roles.

123 citations

Journal ArticleDOI
TL;DR: The available pharmacological agents acting on ASICs are reviewed, which include small molecules and animal toxins, and the current understanding of the molecular mechanisms by which pH controls ASIC activity is discussed.

71 citations

Journal ArticleDOI
04 Jun 2020-eLife
TL;DR: A reentrant loop lines the lower ion permeation pathway and buttresses the ‘Gly-Ala-Ser’ (GAS) constriction, thus providing a structural explanation for the role of the His-Gly dipeptide in the structure and function of ASICs.
Abstract: Acid-sensing ion channels (ASICs) are proton-gated members of the epithelial sodium channel/degenerin (ENaC/DEG) superfamily of ion channels and are expressed throughout the central and peripheral nervous systems. The homotrimeric splice variant ASIC1a has been implicated in nociception, fear memory, mood disorders and ischemia. Here, we extract full-length chicken ASIC1 (cASIC1) from cell membranes using styrene maleic acid (SMA) copolymer, elucidating structures of ASIC1 channels in both high pH resting and low pH desensitized conformations by single-particle cryo-electron microscopy (cryo-EM). The structures of resting and desensitized channels reveal a reentrant loop at the amino terminus of ASIC1 that includes the highly conserved 'His-Gly' (HG) motif. The reentrant loop lines the lower ion permeation pathway and buttresses the 'Gly-Ala-Ser' (GAS) constriction, thus providing a structural explanation for the role of the His-Gly dipeptide in the structure and function of ASICs.

61 citations

Journal ArticleDOI
TL;DR: The data demonstrate the involvement of an ASIC1a-mediated insular synaptic depression mechanism in extinction learning, which raises the possibility of targeting ASIC 1a to manage adaptive behaviours.
Abstract: Acid-sensing ion channel 1a (ASIC1a) has been shown to play important roles in synaptic plasticity, learning and memory. Here we identify a crucial role for ASIC1a in long-term depression (LTD) at mouse insular synapses. Genetic ablation and pharmacological inhibition of ASIC1a reduced the induction probability of LTD without affecting that of long-term potentiation in the insular cortex. The disruption of ASIC1a also attenuated the extinction of established taste aversion memory without altering the initial associative taste learning or its long-term retention. Extinction of taste aversive memory led to the reduced insular synaptic efficacy, which precluded further LTD induction. The impaired LTD and extinction learning in ASIC1a null mice were restored by virus-mediated expression of wild-type ASIC1a, but not its ion-impermeable mutant, in the insular cortices. Our data demonstrate the involvement of an ASIC1a-mediated insular synaptic depression mechanism in extinction learning, which raises the possibility of targeting ASIC1a to manage adaptive behaviours.

45 citations

Journal ArticleDOI
Yihao Zhang1, Ting Zhang1, Chao Wu1, Quan Xia1, Dujuan Xu1 
TL;DR: The data suggest that ASIC1a/Ca2+/PI3K/AKT signaling represents a novel pathway that regulates drug resistance, thus offering a potential target for chemotherapy of HCC.

38 citations