scispace - formally typeset
Search or ask a question
Author

Shi Wei

Bio: Shi Wei is an academic researcher from University of Alabama at Birmingham. The author has contributed to research in topics: Breast cancer & Metastasis. The author has an hindex of 31, co-authored 163 publications receiving 3817 citations. Previous affiliations of Shi Wei include Washington University in St. Louis & University of Alabama.
Topics: Breast cancer, Metastasis, Cancer, Osteoclast, RANKL


Papers
More filters
Journal ArticleDOI
TL;DR: IL-1 mediates the osteoclastogenic effect of TNF by enhancing stromal cell expression of RANKL and directly stimulating differentiation of osteoclass precursors under the aegis of p38 MAPK.
Abstract: TNF-induced receptor activator NF-kappaB ligand (RANKL) synthesis by bone marrow stromal cells is a fundamental component of inflammatory osteolysis. We found that this process was abolished by IL-1 receptor antagonist (IL-1Ra) or in stromal cells derived from type I IL-1 receptor-deficient (IL-1RI-deficient) mice. Reflecting sequential signaling of the cytokines TNF and IL-1, TNF induces stromal cell expression of IL-1 and IL-1RI. These data suggest that TNF regulates RANKL expression via IL-1, and, therefore, IL-1 plays a role in TNF-induced periarticular osteolysis. Consistent with this posture, TNF-stimulated osteoclastogenesis in cultures consisting of WT marrow macrophages and stromal cells exposed to IL-1Ra or in cocultures established with IL-1RI-deficient stromal cells was reduced approximately 50%. The same magnitude of osteoclast inhibition occurred in IL-1RI-deficient mice following TNF administration in vivo. Like TNF, IL-1 directly targeted osteoclast precursors and promoted the osteoclast phenotype in a TNF-independent manner in the presence of permissive levels of RANKL. IL-1 is able to induce RANKL expression by stromal cells and directly stimulate osteoclast precursor differentiation under the aegis of p38 MAPK. Thus, IL-1 mediates the osteoclastogenic effect of TNF by enhancing stromal cell expression of RANKL and directly stimulating differentiation of osteoclast precursors.

684 citations

Journal ArticleDOI
TL;DR: Elevations of the putative oncometabolite l-2HG in the most common subtype of kidney cancer are reported and a novel mechanism for the regulation of DNA 5hmC levels is described.
Abstract: Through unbiased metabolomics, we identified elevations of the metabolite 2-hydroxyglutarate (2HG) in renal cell carcinoma (RCC). 2HG can inhibit 2-oxoglutaratre (2-OG) dependent dioxygenases which mediate epigenetic events including DNA and histone demethylation. 2HG accumulation, specifically the D- enantiomer, can result from gain of function mutations of isocitrate dehydrogenase (IDH1, IDH2) found in several different tumors. In contrast, kidney tumors demonstrate elevations of the L enantiomer of 2HG (L-2HG). High 2HG tumors demonstrate reduced DNA levels of 5-hydroxymethylcytosine (5hmC) consistent with 2-HG mediated inhibition of TET (Ten Eleven Translocation) enzymes which convert 5-methylcystoine (5mC) to 5hmC. L-2HG elevation is mediated in part by reduced expression of L-2HG dehydrogenase (L2HGDH). L2HGDH reconstitution in RCC cells lowers L-2HG and promotes 5hmC accumulation. Additionally, L2HGDH expression in RCC cells reduces histone methylation and suppresses in vitro tumor phenotypes. Our report identifies L-2HG as an epigenetic modifier and putative oncometabolite in kidney cancer.

220 citations

Journal Article
TL;DR: A redox-sensitive signaling pathway leading from TRX to Ref-1 to the AP-1 complex participates in the up-regulation of DNA binding activity in response to ionizing radiation.
Abstract: Thioredoxin (TRX) is a cytoplasmic, redox-sensitive signaling factor believed to participate in the regulation of nuclear transcription factors mediating cellular responses to environmental stress. Activation of the activator protein (AP)-1 transcription factor is thought to be mediated in part by redox-sensitive interactions between the nuclear signaling protein redox factor-1 (Ref-1) and TRX. In this study, the role of TRX and Ref-1 in the activation of the AP-1 complex was examined in HeLa and Jurkat cell lines exposed to ionizing radiation (IR). After exposure to IR, nuclear levels of immunoreactive TRX increased, accompanied by an increase in AP-1 DNA binding activity. It was shown that a physical interaction between Ref-1 and TRX occurs within the nucleus and is enhanced after exposure to IR. Furthermore, TRX immunoprecipitated from irradiated cells was capable of activating AP-1 DNA binding activity in nonirradiated nuclear extracts. In addition, immunodepletion of Ref-1 from nuclear extracts demonstrated that the increase in AP-1 DNA binding activity after IR was also dependent upon the presence of Ref-1 from irradiated cells. Finally, the ability of both TRX and Ref-1 from irradiated cells to stimulate AP-1 DNA binding in nonirradiated nuclear extracts was abolished by chemical oxidation and restored by chemical reduction. These results indicate that, in response to IR, TRX and Ref-1 undergo changes in redox state that contribute to the activation of AP-1 DNA binding activity. These experiments suggest that a redox-sensitive signaling pathway leading from TRX to Ref-1 to the AP-1 complex participates in the up-regulation of DNA binding activity in response to ionizing radiation.

200 citations

Journal ArticleDOI
TL;DR: It is concluded that IL-4 reversibly arrests osteoclastogenesis in a STAT6-dependent manner by preventing IκB phosphorylation and thus NF-κB activation, and blockade of the JNK, p38, and ERK mitogen-activated protein kinase pathways.

192 citations

Journal ArticleDOI
TL;DR: Findings further articulate that breast cancer subtypes differ not only in tumor characteristics but also in their metastatic behavior, thus raising the possibility that this knowledge could potentially be used in determining the appropriate strategy for follow-up of patients with newly diagnosed breast cancer.
Abstract: Objectives: The distant organs to which breast cancer preferentially metastasizes are of significant clinical importance. Methods: We explored the relationship between the clinicopathologic factors and the common sites of distant metastasis in 531 consecutive patients with advanced breast cancer. Results: Breast cancer subtype as a variable was significantly associated with all five common sites of relapse by multivariate analysis. The luminal tumors were remarkable for their significant bone-seeking phenotype and were less frequently observed in lung, brain, and pleural metastases and less likely to be associated with multiorgan relapse. The HER2 subtype demonstrated a significant liver-homing characteristic. African Americans were significantly less likely to have brain-only metastasis in patients with brain relapse. Conclusions: These findings further articulate that breast cancer subtypes differ not only in tumor characteristics but also in their metastatic behavior, thus raising the possibility that this knowledge could potentially be used in determining the appropriate strategy for follow-up of patients with newly diagnosed breast cancer.

180 citations


Cited by
More filters
Journal ArticleDOI
15 May 2003-Nature
TL;DR: Discovery of the RANK signalling pathway in the osteoclast has provided insight into the mechanisms of osteoporosis and activation of bone resorption, and how hormonal signals impact bone structure and mass.
Abstract: Osteoclasts are specialized cells derived from the monocyte/macrophage haematopoietic lineage that develop and adhere to bone matrix, then secrete acid and lytic enzymes that degrade it in a specialized, extracellular compartment. Discovery of the RANK signalling pathway in the osteoclast has provided insight into the mechanisms of osteoclastogenesis and activation of bone resorption, and how hormonal signals impact bone structure and mass. Further study of this pathway is providing the molecular basis for developing therapeutics to treat osteoporosis and other diseases of bone loss.

5,760 citations

Journal ArticleDOI
TL;DR: In this review, the cellular oxidant and antioxidant systems are summarized and the cellular effects and mechanisms of the oxidative stress are discussed.

3,573 citations

Journal ArticleDOI
TL;DR: This Perspective has organized known cancer-associated metabolic changes into six hallmarks: deregulated uptake of glucose and amino acids, use of opportunistic modes of nutrient acquisition, useof glycolysis/TCA cycle intermediates for biosynthesis and NADPH production, increased demand for nitrogen, alterations in metabolite-driven gene regulation, and metabolic interactions with the microenvironment.

3,565 citations

Journal ArticleDOI
TL;DR: This review focuses on the molecular mechanisms through which ROS directly interact with critical signaling molecules to initiate signaling in a broad variety of cellular processes, such as proliferation and survival, ROS homeostasis and antioxidant gene regulation, mitochondrial oxidative stress, apoptosis, and aging.

3,372 citations

Journal ArticleDOI
TL;DR: The TrxR-catalyzed regeneration of several antioxidant compounds, including ascorbic acid (vitamin C), selenium-containing substances, lipoic acid, and ubiquinone are summarized.

2,632 citations