scispace - formally typeset
Search or ask a question
Author

Shie Mannor

Bio: Shie Mannor is an academic researcher from Technion – Israel Institute of Technology. The author has contributed to research in topics: Reinforcement learning & Markov decision process. The author has an hindex of 68, co-authored 535 publications receiving 19245 citations. Previous affiliations of Shie Mannor include McGill University & Nvidia.


Papers
More filters
Journal ArticleDOI
TL;DR: This tutorial presents the CE methodology, the basic algorithm and its modifications, and discusses applications in combinatorial optimization and machine learning.
Abstract: The cross-entropy (CE) method is a new generic approach to combinatorial and multi-extremal optimization and rare event simulation. The purpose of this tutorial is to give a gentle introduction to the CE method. We present the CE methodology, the basic algorithm and its modifications, and discuss applications in combinatorial optimization and machine learning.

2,367 citations

Journal ArticleDOI
TL;DR: A nonlinear version of the recursive least squares (RLS) algorithm that uses a sequential sparsification process that admits into the kernel representation a new input sample only if its feature space image cannot be sufficiently well approximated by combining the images of previously admitted samples.
Abstract: We present a nonlinear version of the recursive least squares (RLS) algorithm. Our algorithm performs linear regression in a high-dimensional feature space induced by a Mercer kernel and can therefore be used to recursively construct minimum mean-squared-error solutions to nonlinear least-squares problems that are frequently encountered in signal processing applications. In order to regularize solutions and keep the complexity of the algorithm bounded, we use a sequential sparsification process that admits into the kernel representation a new input sample only if its feature space image cannot be sufficiently well approximated by combining the images of previously admitted samples. This sparsification procedure allows the algorithm to operate online, often in real time. We analyze the behavior of the algorithm, compare its scaling properties to those of support vector machines, and demonstrate its utility in solving two signal processing problems-time-series prediction and channel equalization.

1,011 citations

Journal Article
TL;DR: A framework that is based on learning the confidence interval around the value function or the Q-function and eliminating actions that are not optimal (with high probability) is described and a model-based and model-free variants of the elimination method are provided.
Abstract: We incorporate statistical confidence intervals in both the multi-armed bandit and the reinforcement learning problems. In the bandit problem we show that given n arms, it suffices to pull the arms a total of O((n/e2)log(1/δ)) times to find an e-optimal arm with probability of at least 1-δ. This bound matches the lower bound of Mannor and Tsitsiklis (2004) up to constants. We also devise action elimination procedures in reinforcement learning algorithms. We describe a framework that is based on learning the confidence interval around the value function or the Q-function and eliminating actions that are not optimal (with high probability). We provide a model-based and a model-free variants of the elimination method. We further derive stopping conditions guaranteeing that the learned policy is approximately optimal with high probability. Simulations demonstrate a considerable speedup and added robustness over e-greedy Q-learning.

604 citations

Journal Article
TL;DR: This work considers regularized support vector machines and shows that they are precisely equivalent to a new robust optimization formulation, thus establishing robustness as the reason regularized SVMs generalize well and gives a new proof of consistency of (kernelized) SVMs.
Abstract: We consider regularized support vector machines (SVMs) and show that they are precisely equivalent to a new robust optimization formulation. We show that this equivalence of robust optimization and regularization has implications for both algorithms, and analysis. In terms of algorithms, the equivalence suggests more general SVM-like algorithms for classification that explicitly build in protection to noise, and at the same time control overfitting. On the analysis front, the equivalence of robustness and regularization provides a robust optimization interpretation for the success of regularized SVMs. We use this new robustness interpretation of SVMs to give a new proof of consistency of (kernelized) SVMs, thus establishing robustness as the reason regularized SVMs generalize well.

419 citations

Journal ArticleDOI
TL;DR: This work considers the Multi-armed bandit problem under the PAC (“probably approximately correct”) model and generalizes the lower bound to a Bayesian setting, and to the case where the statistics of the arms are known but the identities of the Arms are not.
Abstract: We consider the multi-armed bandit problem under the PAC ("probably approximately correct") model. It was shown by Even-Dar et al. (2002) that given n arms, a total of O((n/e2)log(1/δ)) trials suffices in order to find an e-optimal arm with probability at least 1-δ. We establish a matching lower bound on the expected number of trials under any sampling policy. We furthermore generalize the lower bound, and show an explicit dependence on the (unknown) statistics of the arms. We also provide a similar bound within a Bayesian setting. The case where the statistics of the arms are known but the identities of the arms are not, is also discussed. For this case, we provide a lower bound of Θ((1/e2)(n+log(1/δ))) on the expected number of trials, as well as a sampling policy with a matching upper bound. If instead of the expected number of trials, we consider the maximum (over all sample paths) number of trials, we establish a matching upper and lower bound of the form Θ((n/e2)log(1/δ)). Finally, we derive lower bounds on the expected regret, in the spirit of Lai and Robbins.

405 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations