scispace - formally typeset
Search or ask a question
Author

Shihui Ying

Bio: Shihui Ying is an academic researcher from Shanghai University. The author has contributed to research in topics: Computer science & Iterative closest point. The author has an hindex of 17, co-authored 64 publications receiving 1232 citations. Previous affiliations of Shihui Ying include University of North Carolina at Chapel Hill & Xi'an Jiaotong University.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel method that extracts the virus feature from the filtered images by multi-scale principal component analysis (PCA) and is combined as the feature MPMC (Multi-scale PCA and Multi-scale CLBP), which is proposed in this paper.

21 citations

Journal ArticleDOI
TL;DR: A unified mathematical model of ICP based on Lie group representation is established and a fast algorithm by solving an iterative linear system is designed for the optimization problem on Lie groups.
Abstract: The iterative closet point (ICP) method is a dominant method for data registration that has attracted extensive attention. In this paper, a unified mathematical model of ICP based on Lie group representation is established. Under the framework, the registration problem is formulated into an optimization problem over a certain Lie group. In order to simplify the model and to reduce the dimension of parameter space, the translation part of geometric transformation is eliminated by calibrating the centers of two data sets under registration. As a result, a fast algorithm by solving an iterative linear system is designed for the optimization problem on Lie groups. Moreover, PCA and ICA methods are jointly applied to estimate the initial registration to achieve the global minimum. Finally, several illustrations and comparison experiments are presented to test the performance of the proposed algorithm.

17 citations

Journal ArticleDOI
TL;DR: This article addresses the KLD metric-learning task, which aims at learning the best KLD-type metric from the distributions of datasets, and develops an intrinsic steepest descent method, which preserves the manifold structure of the metric in the iteration.
Abstract: The Kullback-Leibler divergence (KLD), which is widely used to measure the similarity between two distributions, plays an important role in many applications. In this article, we address the KLD metric-learning task, which aims at learning the best KLD-type metric from the distributions of datasets. Concretely, first, we extend the conventional KLD by introducing a linear mapping and obtain the best KLD to well express the similarity of data distributions by optimizing such a linear mapping. It improves the expressivity of data distribution, which means it makes the distributions in the same class close and those in different classes far away. Then, the KLD metric learning is modeled by a minimization problem on the manifold of all positive-definite matrices. To deal with this optimization task, we develop an intrinsic steepest descent method, which preserves the manifold structure of the metric in the iteration. Finally, we apply the proposed method along with ten popular metric-learning approaches on the tasks of 3-D object classification and document classification. The experimental results illustrate that our proposed method outperforms all other methods.

17 citations

Journal ArticleDOI
Shaorong Xie1, Chao Pan1, Yaxin Peng1, Ke Liu1, Shihui Ying1 
19 May 2020-Sensors
TL;DR: A fusion network which robustly captures both the image and point cloud descriptors to solve the place recognition problem and the experiments show that the proposed fused descriptor is more robust and discriminative than the single sensor descriptor.
Abstract: In the field of autonomous driving, carriers are equipped with a variety of sensors, including cameras and LiDARs. However, the camera suffers from problems of illumination and occlusion, and the LiDAR encounters motion distortion, degenerate environment and limited ranging distance. Therefore, fusing the information from these two sensors deserves to be explored. In this paper, we propose a fusion network which robustly captures both the image and point cloud descriptors to solve the place recognition problem. Our contribution can be summarized as: (1) applying the trimmed strategy in the point cloud global feature aggregation to improve the recognition performance, (2) building a compact fusion framework which captures both the robust representation of the image and 3D point cloud, and (3) learning a proper metric to describe the similarity of our fused global feature. The experiments on KITTI and KAIST datasets show that the proposed fused descriptor is more robust and discriminative than the single sensor descriptor.

17 citations

Journal ArticleDOI
TL;DR: A way of selecting a good initial registration based on ICA method to achieve the global minimum was suggested and a novel affine registration algorithm was proposed.
Abstract: In this paper, 2D affine registration problem was studied. First, combining with the procedure of traditional iterative closest point method, the registration problem was modeled as an optimization problem on Lie group $$GL(2,{\mathfrak{R}})$$. To assure the registration non-degenerate, some reasonable constraints were introduced into the model by Iwasawa decomposition. Then, a series of quadratic programming were used to approximate the registration problem and a novel affine registration algorithm was proposed. At last, several illustration and comparison experiments were presented to demonstrate the performance and efficiency of the proposed algorithm. Particularly, a way of selecting a good initial registration based on ICA method to achieve the global minimum was suggested.

16 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.

8,730 citations

Posted Content
TL;DR: This work proposes the Learning without Forgetting method, which uses only new task data to train the network while preserving the original capabilities, and performs favorably compared to commonly used feature extraction and fine-tuning adaption techniques.
Abstract: When building a unified vision system or gradually adding new capabilities to a system, the usual assumption is that training data for all tasks is always available. However, as the number of tasks grows, storing and retraining on such data becomes infeasible. A new problem arises where we add new capabilities to a Convolutional Neural Network (CNN), but the training data for its existing capabilities are unavailable. We propose our Learning without Forgetting method, which uses only new task data to train the network while preserving the original capabilities. Our method performs favorably compared to commonly used feature extraction and fine-tuning adaption techniques and performs similarly to multitask learning that uses original task data we assume unavailable. A more surprising observation is that Learning without Forgetting may be able to replace fine-tuning with similar old and new task datasets for improved new task performance.

1,037 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis, and provide a starting point for people interested in experimenting and perhaps contributing to the field of machine learning for medical imaging.
Abstract: What has happened in machine learning lately, and what does it mean for the future of medical image analysis? Machine learning has witnessed a tremendous amount of attention over the last few years. The current boom started around 2009 when so-called deep artificial neural networks began outperforming other established models on a number of important benchmarks. Deep neural networks are now the state-of-the-art machine learning models across a variety of areas, from image analysis to natural language processing, and widely deployed in academia and industry. These developments have a huge potential for medical imaging technology, medical data analysis, medical diagnostics and healthcare in general, slowly being realized. We provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis. As this has become a very broad and fast expanding field we will not survey the entire landscape of applications, but put particular focus on deep learning in MRI. Our aim is threefold: (i) give a brief introduction to deep learning with pointers to core references; (ii) indicate how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction; (iii) provide a starting point for people interested in experimenting and perhaps contributing to the field of machine learning for medical imaging by pointing out good educational resources, state-of-the-art open-source code, and interesting sources of data and problems related medical imaging.

991 citations

Journal ArticleDOI
TL;DR: This paper provides a comprehensive survey on the application of DL, RL, and deep RL techniques in mining biological data and compares the performances of DL techniques when applied to different data sets across various application domains.
Abstract: Rapid advances in hardware-based technologies during the past decades have opened up new possibilities for life scientists to gather multimodal data in various application domains, such as omics , bioimaging , medical imaging , and (brain/body)–machine interfaces . These have generated novel opportunities for development of dedicated data-intensive machine learning techniques. In particular, recent research in deep learning (DL), reinforcement learning (RL), and their combination (deep RL) promise to revolutionize the future of artificial intelligence. The growth in computational power accompanied by faster and increased data storage, and declining computing costs have already allowed scientists in various fields to apply these techniques on data sets that were previously intractable owing to their size and complexity. This paper provides a comprehensive survey on the application of DL, RL, and deep RL techniques in mining biological data. In addition, we compare the performances of DL techniques when applied to different data sets across various application domains. Finally, we outline open issues in this challenging research area and discuss future development perspectives.

622 citations

Journal ArticleDOI
TL;DR: This paper indicates how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction, and provides a starting point for people interested in experimenting and contributing to the field of deep learning for medical imaging.
Abstract: What has happened in machine learning lately, and what does it mean for the future of medical image analysis? Machine learning has witnessed a tremendous amount of attention over the last few years. The current boom started around 2009 when so-called deep artificial neural networks began outperforming other established models on a number of important benchmarks. Deep neural networks are now the state-of-the-art machine learning models across a variety of areas, from image analysis to natural language processing, and widely deployed in academia and industry. These developments have a huge potential for medical imaging technology, medical data analysis, medical diagnostics and healthcare in general, slowly being realized. We provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis. As this has become a very broad and fast expanding field we will not survey the entire landscape of applications, but put particular focus on deep learning in MRI. Our aim is threefold: (i) give a brief introduction to deep learning with pointers to core references; (ii) indicate how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction; (iii) provide a starting point for people interested in experimenting and perhaps contributing to the field of deep learning for medical imaging by pointing out good educational resources, state-of-the-art open-source code, and interesting sources of data and problems related medical imaging.

590 citations