scispace - formally typeset
Search or ask a question
Author

Shiji Wu

Bio: Shiji Wu is an academic researcher from Huazhong University of Science and Technology. The author has contributed to research in topics: Medicine & Immunology. The author has an hindex of 2, co-authored 3 publications receiving 2596 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The SARS-CoV-2 infection may affect primarily T lymphocytes particularly CD4+T and CD8+ T cells, resulting in decrease in numbers as well as IFN-γ production, which may be of importance due to their correlation with disease severity in COVID-19.
Abstract: BACKGROUNDSince December 2019, an outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, and is now becoming a global threat. We aimed to delineate and compare the immunological features of severe and moderate COVID-19.METHODSIn this retrospective study, the clinical and immunological characteristics of 21 patients (17 male and 4 female) with COVID-19 were analyzed. These patients were classified as severe (11 cases) and moderate (10 cases) according to the guidelines released by the National Health Commission of China.RESULTSThe median age of severe and moderate cases was 61.0 and 52.0 years, respectively. Common clinical manifestations included fever, cough, and fatigue. Compared with moderate cases, severe cases more frequently had dyspnea, lymphopenia, and hypoalbuminemia, with higher levels of alanine aminotransferase, lactate dehydrogenase, C-reactive protein, ferritin, and D-dimer as well as markedly higher levels of IL-2R, IL-6, IL-10, and TNF-α. Absolute numbers of T lymphocytes, CD4+ T cells, and CD8+ T cells decreased in nearly all the patients, and were markedly lower in severe cases (294.0, 177.5, and 89.0 × 106/L, respectively) than moderate cases (640.5, 381.5, and 254.0 × 106/L, respectively). The expression of IFN-γ by CD4+ T cells tended to be lower in severe cases (14.1%) than in moderate cases (22.8%).CONCLUSIONThe SARS-CoV-2 infection may affect primarily T lymphocytes, particularly CD4+ and CD8+ T cells, resulting in a decrease in numbers as well as IFN-γ production by CD4+ T cells. These potential immunological markers may be of importance because of their correlation with disease severity in COVID-19.TRIAL REGISTRATIONThis is a retrospective observational study without a trial registration number.FUNDINGThis work is funded by grants from Tongji Hospital for the Pilot Scheme Project, and partly supported by the Chinese National Thirteenth Five Years Project in Science and Technology for Infectious Disease (2017ZX10202201).

3,488 citations

Posted ContentDOI
19 Feb 2020-medRxiv
TL;DR: The SARS-CoV-2 infection may affect primarily T lymphocytes, particularly CD4+T cells, resulting in significant decrease in number as well as IFN-γ production, which may be associated with disease severity in COVID-19.
Abstract: Background Since late December, 2019, an outbreak of pneumonia cases caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, and continued to spread throughout China and across the globe. To date, few data on immunologic features of Coronavirus Disease 2019 (COVID-19) have been reported. Methods In this single-centre retrospective study, a total of 21 patients with pneumonia who were laboratory-confirmed to be infected with SARS-CoV-2 in Wuhan Tongji hospital were included from Dec 19, 2019 to Jan 27, 2020. The immunologic characteristics as well as their clinical, laboratory, radiological features were compared between 11 severe cases and 10 moderate cases. Results Of the 21 patients with COVID-19, only 4 (19%) had a history of exposure to the Huanan seafood market. 7 (33.3%) patients had underlying conditions. The average age of severe and moderate cases was 63.9 and 51.4 years, 10 (90.9%) severe cases and 7 (70.0%) moderate cases were male. Common clinical manifestations including fever (100%, 100%), cough (70%, 90%), fatigue (100%, 70%) and myalgia (50%, 30%) in severe cases and moderate cases. PaO2/FiO2 ratio was significantly lower in severe cases (122.9) than moderate cases (366.2). Lymphocyte counts were significantly lower in severe cases (0.7 × 10□/L) than moderate cases (1.1 × 10□/L). Alanine aminotransferase, lactate dehydrogenase levels, high-sensitivity C-reactive protein and ferritin were significantly higher in severe cases (41.4 U/L, 567.2 U/L, 135.2 mg/L and 1734.4 ug/L) than moderate cases (17.6 U/L, 234.4 U/L, 51.4 mg/L and 880.2 ug /L). IL-2R, TNF-α and IL-10 concentrations on admission were significantly higher in severe cases (1202.4 pg/mL, 10.9 pg/mL and 10.9 pg/mL) than moderate cases (441.7 pg/mL, 7.5 pg/mL and 6.6 pg/mL). Absolute number of total T lymphocytes, CD4+T cells and CD8+T cells decreased in nearly all the patients, and were significantly lower in severe cases (332.5, 185.6 and 124.3 × 106/L) than moderate cases (676.5, 359.2 and 272.0 × 106/L). The expressions of IFN-γ by CD4+T cells tended to be lower in severe cases (14.6%) than moderate cases (23.6%). Conclusion The SARS-CoV-2 infection may affect primarily T lymphocytes, particularly CD4+T cells, resulting in significant decrease in number as well as IFN-γ production, which may be associated with disease severity. Together with clinical characteristics, early immunologic indicators including diminished T lymphocytes and elevated cytokines may serve as potential markers for prognosis in COVID-19.

161 citations

Journal ArticleDOI
TL;DR: The MRI-clinical-radiomics nomograms developed in this study showed high predictive performance, which can be used to predict the axillary NSLN status in SLN-positive breast cancer patients before surgery.
Abstract: Background Overtreatment of axillary lymph node dissection (ALND) may occur in patients with axillary positive sentinel lymph node (SLN) but negative non-SLN (NSLN). Developing a magnetic resonance imaging (MRI)-based radiomics nomogram to predict axillary NSLN metastasis in patients with SLN-positive breast cancer could effectively decrease the probability of overtreatment and optimize a personalized axillary surgical strategy. Methods This retrospective study included 285 patients with positive SLN breast cancer. Fifty five of them had metastatic NSLNs and 230 had non-metastatic NSLNs. MRI-based radiomic features of primary tumors were extracted and MRI morphologic findings of the primary tumor and axillary lymph nodes were assessed. Four models, namely, a radiomics signature, an MRI-clinical nomogram, and two MRI-clinical-radiomics nomograms were established based on MRI morphologic findings, clinicopathologic characteristics, and MRI-based radiomic features to predict the NSLN status. The optimal predictors in each model were selected using the 5-fold cross-validation (CV) method. Their predictive performances were determined by the receiver operating characteristic (ROC) curves analysis. The area under the curves (AUCs) of different models was compared by the Delong test. Their discrimination capability, calibration curve, and clinical usefulness were also assessed. Results The 5-fold CV analysis showed that the AUCs ranged from 0.770 to 0.847 for the radiomics signature, from 0.720 to 0.824 for the MRI-clinical nomogram, from 0.843 to 0.932 for the MRI-clinical-radiomics nomogram. The optimal predictive factors in the radiomics signature, MRI-clinical nomogram, and MRI-clinical-radiomics nomogram were one texture feature of diffusion-weighted imaging (DWI), two clinicopathologic features together with one MRI morphologic finding, and the DWI-based texture feature together with the two clinicopathologic features plus the one MRI morphologic finding, respectively. The MRI-clinical-radiomics nomogram with CA 15-3 included achieved the highest AUC compared with the radiomics signature (0.868 vs. 0.806, P <0.001) and MRI-clinical nomogram (0.868 vs. 0.761; P <0.001). In addition, the MRI-clinical-radiomics nomogram without CA 15-3 showed a higher performance than that of the radiomics signature (AUC, 0.852 vs. 0.806, P = 0.016) and the MRI-clinical nomogram (AUC, 0.852 vs. 0.761, P = 0.007). The MRI-clinical-radiomics nomograms showed good discrimination and good calibration. Decision curve analysis demonstrated that the MRI-clinical-radiomics nomograms were clinically useful. Conclusion The MRI-clinical-radiomics nomograms developed in our study showed high predictive performance, which can be used to predict the axillary NSLN status in SLN-positive breast cancer patients before surgery.

3 citations

Journal ArticleDOI
TL;DR: The TBAg/PHA ratio in patients after 6 months of treatment showed a certain potential in distinguishing between patients with successful and unsuccessful treatment outcomes, and a further calculation in T-SPOT assay has potential value in the treatment monitoring of TB.
Abstract: The way to monitor tuberculosis (TB) treatment is extremely lacking in clinical practice. The aim of the study is to assess the role of the TBAg/PHA ratio in the treatment monitoring of TB. TB patients were followed up for 6 months and serial T-SPOT.TB (T-SPOT) assays were performed. In patients with successful treatment outcomes, the ESAT-6 sfc, CFP-10 sfc, and TBAg/PHA ratio all showed a decreased trend after the initiation of treatment. Conversely, PHA sfc showed an increased trend after 2 months of treatment. However, these indicators had moderate performance in distinguishing between before and after 6 months of treatment, and the AUC ranged from 0.702 to 0.839. Notably, the TBAg/PHA ratio in patients without risk factors was of important value in differentiation between before and after treatment. The optimal AUC of TBAg/PHA ratio reached up to 0.890. Patients with unsuccessful treatment outcomes showed persistently high levels of TBAg/PHA ratio. The TBAg/PHA ratio in patients after 6 months of treatment showed a certain potential in distinguishing between patients with successful and unsuccessful treatment outcomes. A further calculation of the TBAg/PHA ratio in T-SPOT assay has potential value in the treatment monitoring of TB, but further confirmation is needed.

2 citations

Journal ArticleDOI
TL;DR: SARS-CoV-2 antibody assays may have an adjunct role in the diagnosis and exclusion of COVID-19, especially by using high-throughput technologies (EIAs or CLIAs), and the sensitivities of both IgG and IgM gradually increased with increase of onset time.
Abstract: Background The accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the key to control Coronavirus Disease-2019 (COVID-19). The performance of different antibody detection methods for diagnosis of COVID-19 is inconclusive. Methods Between 16 February and 28 February 2020, 384 confirmed COVID-19 patients and 142 healthy controls were recruited. 24 different serological tests, including 4 enzyme-linked immunosorbent assays (EIAs), 10 chemiluminescent immunoassays (CLIAs), and 10 lateral flow immunoassays (LFIAs), were simultaneously performed. Results The sensitivities of anti-SARS-CoV-2 IgG and IgM antibodies with different reagents ranged from 75 to 95.83% and 46.09 to 92.45%, respectively. The specificities of both anti-SARS-CoV-2 IgG and IgM were relatively high and comparable among different reagents, ranged from 88.03 to 100%. The area under the curves (AUCs) of different tests ranged from 0.733 to 0.984, and the AUCs of EIAs or CLIAs were significantly higher than those of LFIAs. The sensitivities of both IgG and IgM gradually increased with increase of onset time. After 3–4 weeks, the sensitivities of anti-SARS-CoV-2 IgG were maintained at a certain level but the sensitivities of IgM were gradually decreased. Six COVID-19 patients who displayed negative anti-SARS-CoV-2 results were associated with the factors such as older age, having underlying diseases, and using immunosuppressant. Conclusion Besides the purpose of assessing the impact of the SARS-CoV-2 pandemic in the population, SARS-CoV-2 antibody assays may have an adjunct role in the diagnosis and exclusion of COVID-19, especially by using high-throughput technologies (EIAs or CLIAs).

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The interaction of SARS-CoV-2 with the immune system and the subsequent contribution of dysfunctional immune responses to disease progression is described and the implications of these approaches for potential therapeutic interventions that target viral infection and/or immunoregulation are highlighted.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Alongside investigations into the virology of SARS-CoV-2, understanding the fundamental physiological and immunological processes underlying the clinical manifestations of COVID-19 is vital for the identification and rational design of effective therapies. Here, we provide an overview of the pathophysiology of SARS-CoV-2 infection. We describe the interaction of SARS-CoV-2 with the immune system and the subsequent contribution of dysfunctional immune responses to disease progression. From nascent reports describing SARS-CoV-2, we make inferences on the basis of the parallel pathophysiological and immunological features of the other human coronaviruses targeting the lower respiratory tract - severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). Finally, we highlight the implications of these approaches for potential therapeutic interventions that target viral infection and/or immunoregulation.

3,236 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the current literature on post-acute COVID-19, its pathophysiology and its organ-specific sequelae is provided in this paper, where the authors discuss relevant considerations for the multidisciplinary care of COPD survivors and propose a framework for the identification of those at high risk for COPD and their coordinated management through dedicated COPD clinics.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) pandemic, which has resulted in global healthcare crises and strained health resources. As the population of patients recovering from COVID-19 grows, it is paramount to establish an understanding of the healthcare issues surrounding them. COVID-19 is now recognized as a multi-organ disease with a broad spectrum of manifestations. Similarly to post-acute viral syndromes described in survivors of other virulent coronavirus epidemics, there are increasing reports of persistent and prolonged effects after acute COVID-19. Patient advocacy groups, many members of which identify themselves as long haulers, have helped contribute to the recognition of post-acute COVID-19, a syndrome characterized by persistent symptoms and/or delayed or long-term complications beyond 4 weeks from the onset of symptoms. Here, we provide a comprehensive review of the current literature on post-acute COVID-19, its pathophysiology and its organ-specific sequelae. Finally, we discuss relevant considerations for the multidisciplinary care of COVID-19 survivors and propose a framework for the identification of those at high risk for post-acute COVID-19 and their coordinated management through dedicated COVID-19 clinics.

2,307 citations

Journal ArticleDOI
13 Jul 2020-Science
TL;DR: The results of this trio of studies suggest that the location, timing, and duration of IFN exposure are critical parameters underlying the success or failure of therapeutics for viral respiratory infections.
Abstract: Coronavirus disease 2019 (COVID-19) is characterized by distinct patterns of disease progression suggesting diverse host immune responses. We performed an integrated immune analysis on a cohort of 50 COVID-19 patients with various disease severity. A unique phenotype was observed in severe and critical patients, consisting of a highly impaired interferon (IFN) type I response (characterized by no IFN-β and low IFN-α production and activity), associated with a persistent blood viral load and an exacerbated inflammatory response. Inflammation was partially driven by the transcriptional factor NF-κB and characterized by increased tumor necrosis factor (TNF)-α and interleukin (IL)-6 production and signaling. These data suggest that type-I IFN deficiency in the blood could be a hallmark of severe COVID-19 and provide a rationale for combined therapeutic approaches.

2,171 citations

Journal ArticleDOI
04 Jun 2020-Blood
TL;DR: COVID-19–associated coagulopathy should be managed as it would be for any critically ill patient, following the established practice of using thromboembolic prophylaxis for critically ill hospitalized patients, and standard supportive care measures for those with sepsis-induced coagULopathy or DIC.

1,844 citations