scispace - formally typeset
Search or ask a question
Author

Shijun Xiao

Bio: Shijun Xiao is an academic researcher from Wuhan University of Technology. The author has contributed to research in topics: Genome & Sequence assembly. The author has an hindex of 10, co-authored 17 publications receiving 335 citations.

Papers
More filters
Journal ArticleDOI
01 Aug 2018-Nature
TL;DR: A functional single-chromosome yeast from a Saccharomyces cerevisiae haploid cell containing sixteen linear chromosomes is created by successive end-to-end chromosome fusions and centromere deletions to demonstrate an approach to exploration of eukaryote evolution with respect to chromosome structure and function.
Abstract: Eukaryotic genomes are generally organized in multiple chromosomes. Here we have created a functional single-chromosome yeast from a Saccharomyces cerevisiae haploid cell containing sixteen linear chromosomes, by successive end-to-end chromosome fusions and centromere deletions. The fusion of sixteen native linear chromosomes into a single chromosome results in marked changes to the global three-dimensional structure of the chromosome due to the loss of all centromere-associated inter-chromosomal interactions, most telomere-associated inter-chromosomal interactions and 67.4% of intra-chromosomal interactions. However, the single-chromosome and wild-type yeast cells have nearly identical transcriptome and similar phenome profiles. The giant single chromosome can support cell life, although this strain shows reduced growth across environments, competitiveness, gamete production and viability. This synthetic biology study demonstrates an approach to exploration of eukaryote evolution with respect to chromosome structure and function.

171 citations

Journal ArticleDOI
TL;DR: The genomic resources generated in this work not only offer a valuable reference genome for functional genomics studies of yellow catfish to decipher the economic traits and sex determination but also provide important chromosome information for genome comparisons in the wider evolutionary research community.
Abstract: Background The yellow catfish, Pelteobagrus fulvidraco, belonging to the Siluriformes order, is an economically important freshwater aquaculture fish species in Asia, especially in Southern China. The aquaculture industry has recently been facing tremendous challenges in germplasm degeneration and poor disease resistance. As the yellow catfish exhibits notable sex dimorphism in growth, with adult males about two- to three-fold bigger than females, the way in which the aquaculture industry takes advantage of such sex dimorphism is another challenge. To address these issues, a high-quality reference genome of the yellow catfish would be a very useful resource. Findings To construct a high-quality reference genome for the yellow catfish, we generated 51.2 Gb short reads and 38.9 Gb long reads using Illumina and Pacific Biosciences (PacBio) sequencing platforms, respectively. The sequencing data were assembled into a 732.8 Mb genome assembly with a contig N50 length of 1.1 Mb. Additionally, we applied Hi-C technology to identify contacts among contigs, which were then used to assemble contigs into scaffolds, resulting in a genome assembly with 26 chromosomes and a scaffold N50 length of 25.8 Mb. Using 24,552 protein-coding genes annotated in the yellow catfish genome, the phylogenetic relationships of the yellow catfish with other teleosts showed that yellow catfish separated from the common ancestor of channel catfish ∼81.9 million years ago. We identified 1,717 gene families to be expanded in the yellow catfish, and those gene families are mainly enriched in the immune system, signal transduction, glycosphingolipid biosynthesis, and fatty acid biosynthesis. Conclusions Taking advantage of Illumina, PacBio, and Hi-C technologies, we constructed the first high-quality chromosome-level genome assembly for the yellow catfish P. fulvidraco. The genomic resources generated in this work not only offer a valuable reference genome for functional genomics studies of yellow catfish to decipher the economic traits and sex determination but also provide important chromosome information for genome comparisons in the wider evolutionary research community.

100 citations

Journal ArticleDOI
TL;DR: The chromosome-scale assembly ofsweet cherry revealed that gene duplication events contributed to the expansion of gene families for salicylic acid/jasmonic acid carboxyl methyltransferase and ankyrin repeat-containing proteins in the genome of sweet cherry.
Abstract: Sweet cherry (Prunus avium) is an economically significant fruit species in the genus Prunus. However, in contrast to other important fruit trees in this genus, only one draft genome assembly is available for sweet cherry, which was assembled using only Illumina short-read sequences. The incompleteness and low quality of the current sweet cherry draft genome limit its use in genetic and genomic studies. A high-quality chromosome-scale sweet cherry reference genome assembly is therefore needed. A total of 65.05 Gb of Oxford Nanopore long reads and 46.24 Gb of Illumina short reads were generated, representing ~190x and 136x coverage, respectively, of the sweet cherry genome. The final de novo assembly resulted in a phased haplotype assembly of 344.29 Mb with a contig N50 of 3.25 Mb. Hi-C scaffolding of the genome resulted in eight pseudochromosomes containing 99.59% of the bases in the assembled genome. Genome annotation revealed that more than half of the genome (59.40%) was composed of repetitive sequences, and 40,338 protein-coding genes were predicted, 75.40% of which were functionally annotated. With the chromosome-scale assembly, we revealed that gene duplication events contributed to the expansion of gene families for salicylic acid/jasmonic acid carboxyl methyltransferase and ankyrin repeat-containing proteins in the genome of sweet cherry. Four auxin-responsive genes (two GH3s and two SAURs) were induced in the late stage of fruit development, indicating that auxin is crucial for the sweet cherry ripening process. In addition, 772 resistance genes were identified and functionally predicted in the sweet cherry genome. The high-quality genome assembly of sweet cherry obtained in this study will provide valuable genomic resources for sweet cherry improvement and molecular breeding.

36 citations

Journal ArticleDOI
TL;DR: A draft genome assembly for the Chinese sillago is built, which is the first reference genome for Sillaginidae species, and sets a stage for comparative analysis of the diversification and adaptation of fishes in Sillsaginidae.
Abstract: Background: Sillaginidae, also known as smelt-whitings, is a family of benthic coastal marine fishes in the Indo-West Pacific that have high ecological and economic importance Many Sillaginidae species, including the Chinese sillago (Sillago sinica), have been recently described in China, providing valuable material to analyze genetic diversification of the family Sillaginidae Here, we constructed a reference genome for the Chinese sillago, with the aim to set up a platform for comparative analysis of all species in this family Findings: Using the single-molecule real-time DNA sequencing platform Pacific Biosciences (PacBio) Sequel, we generated similar to 273 Gb genomic DNA sequences for the Chinese sillago We reconstructed a genome assembly of 534 Mb using a strategy that takes advantage of complementary strengths of two genome assembly programs, Canu and FALCON The genome size was consistent with the estimated genome size based on k-mer analysis The assembled genome consisted of 802 contigs with a contig N50 length of 26 Mb We annotated 22,122 protein-coding genes in the Chinese sillago genomes using a de novo method as well as RNA sequencing data and homologies to other teleosts According to the phylogenetic analysis using protein-coding genes, the Chinese sillago is closely related to Larimichthys crocea and Dicentrarchus labrax and diverged from their ancestor around 695-826 million years ago Conclusions: Using long reads generated with PacBio sequencing technology, we have built a draft genome assembly for the Chinese sillago, which is the first reference genome for Sillaginidae species This genome assembly sets a stage for comparative analysis of the diversification and adaptation of fishes in Sillaginidae

33 citations

Journal ArticleDOI
TL;DR: The assembled genome can be used as a reference for future population genetic studies of O. stewartii and will improve the understanding of high altitude adaptation of fishes in the Qinghai-Tibetan Plateau.
Abstract: Animal genomes in the Qinghai-Tibetan Plateau provide valuable resources for scientists to understand the molecular mechanism of environmental adaptation. Tibetan fish species play essential roles in the local ecology; however, the genomic information for native fishes was still insufficient. Oxygymnocypris stewartii, belonging to Oxygymnocypris genus, Schizothoracinae subfamily, is a native fish in the Tibetan plateau living within the elevation from roughly 3,000 m to 4,200 m. In this report, PacBio and Illumina sequencing platform were used to generate ~385.3 Gb genomic sequencing data. A genome of about 1,849.2 Mb was obtained with a contig N50 length of 257.1 kb. More than 44.5% of the genome were identified as repetitive elements, and 46,400 protein-coding genes were annotated in the genome. The assembled genome can be used as a reference for future population genetic studies of O. stewartii and will improve our understanding of high altitude adaptation of fishes in the Qinghai-Tibetan Plateau.

31 citations


Cited by
More filters
10 Dec 2007
TL;DR: The experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.
Abstract: EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

1,528 citations

Journal ArticleDOI
TL;DR: The authors review how genomics is being applied to aquaculture species at all stages of the domestication process to optimize selective breeding and how combining genomic selection with biotechnological innovations, such as genome editing and surrogate broodstock technologies, may further expedite genetic improvement in Aquaculture.
Abstract: Aquaculture is the fastest-growing farmed food sector and will soon become the primary source of fish and shellfish for human diets. In contrast to crop and livestock production, aquaculture production is derived from numerous, exceptionally diverse species that are typically in the early stages of domestication. Genetic improvement of production traits via well-designed, managed breeding programmes has great potential to help meet the rising seafood demand driven by human population growth. Supported by continuous advances in sequencing and bioinformatics, genomics is increasingly being applied across the broad range of aquaculture species and at all stages of the domestication process to optimize selective breeding. In the future, combining genomic selection with biotechnological innovations, such as genome editing and surrogate broodstock technologies, may further expedite genetic improvement in aquaculture.

257 citations

Journal ArticleDOI
TL;DR: Systematic analysis of highly rearranged balancer chromosomes in Drosophila shows that extensive changes to chromatin topology affect the expression of only a subset of genes, and suggests that properties other than chromatinTopology ensure productive enhancer–promoter interactions.
Abstract: Chromatin topology is intricately linked to gene expression, yet its functional requirement remains unclear. Here, we comprehensively assessed the interplay between genome topology and gene expression using highly rearranged chromosomes (balancers) spanning ~75% of the Drosophila genome. Using transheterozyte (balancer/wild-type) embryos, we measured allele-specific changes in topology and gene expression in cis, while minimizing trans effects. Through genome sequencing, we resolved eight large nested inversions, smaller inversions, duplications and thousands of deletions. These extensive rearrangements caused many changes to chromatin topology, disrupting long-range loops, topologically associating domains (TADs) and promoter interactions, yet these are not predictive of changes in expression. Gene expression is generally not altered around inversion breakpoints, indicating that mis-appropriate enhancer–promoter activation is a rare event. Similarly, shuffling or fusing TADs, changing intra-TAD connections and disrupting long-range inter-TAD loops does not alter expression for the majority of genes. Our results suggest that properties other than chromatin topology ensure productive enhancer–promoter interactions. Systematic analysis of highly rearranged balancer chromosomes in Drosophila shows that extensive changes to chromatin topology affect the expression of only a subset of genes.

252 citations

Journal ArticleDOI
01 Aug 2018-Nature
TL;DR: Overall, budding yeast tolerates a reduction in chromosome number unexpectedly well, providing a striking example of the robustness of genomes to change.
Abstract: Extant species have wildly different numbers of chromosomes, even among taxa with relatively similar genome sizes (for example, insects)1,2. This is likely to reflect accidents of genome history, such as telomere–telomere fusions and genome duplication events3–5. Humans have 23 pairs of chromosomes, whereas other apes have 24. One human chromosome is a fusion product of the ancestral state6. This raises the question: how well can species tolerate a change in chromosome numbers without substantial changes to genome content? Many tools are used in chromosome engineering in Saccharomyces cerevisiae7–10, but CRISPR–Cas9-mediated genome editing facilitates the most aggressive engineering strategies. Here we successfully fused yeast chromosomes using CRISPR–Cas9, generating a near-isogenic series of strains with progressively fewer chromosomes ranging from sixteen to two. A strain carrying only two chromosomes of about six megabases each exhibited modest transcriptomic changes and grew without major defects. When we crossed a sixteen-chromosome strain with strains with fewer chromosomes, we noted two trends. As the number of chromosomes dropped below sixteen, spore viability decreased markedly, reaching less than 10% for twelve chromosomes. As the number of chromosomes decreased further, yeast sporulation was arrested: a cross between a sixteen-chromosome strain and an eight-chromosome strain showed greatly reduced full tetrad formation and less than 1% sporulation, from which no viable spores could be recovered. However, homotypic crosses between pairs of strains with eight, four or two chromosomes produced excellent sporulation and spore viability. These results indicate that eight chromosome–chromosome fusion events suffice to isolate strains reproductively. Overall, budding yeast tolerates a reduction in chromosome number unexpectedly well, providing a striking example of the robustness of genomes to change. Yeast chromosomes have been fused to produce viable strains with only two chromosomes that are reproductively isolated from the sixteen-chromosome wild type, but otherwise show high fitness in mitosis and meiosis.

111 citations

Journal ArticleDOI
TL;DR: The present study revealed the novel mechanism for lipophagy mediating HCD-induced changes of lipid metabolism by oxidative stress and ER stress, and ChREBP/PPARγ pathways, and provided innovative evidence for the direct relationship between carbohydrate and lipid metabolism via ChRE BP/ PPARγ pathway.
Abstract: High-carbohydrate diets (HCD) can induce the occurrence of nonalcoholic fatty liver disease (NAFLD), characterized by dramatic accumulation of hepatic lipid droplets (LDs). However, the potential molecular mechanisms are still largely unknown. In this study, we investigated the role of autophagy in the process of HCD-induced changes of hepatic lipid metabolism, and to examine the process of underlying mechanisms during these molecular contexts. We found that HCD significantly increased hepatic lipid accumulation and activated autophagy. Using primary hepatocytes, we found that HG increased lipid accumulation and stimulated the release of NEFA by autophagy-mediated lipophagy, and that lipophagy significantly alleviated high glucose (HG)-induced lipid accumulation. Oxidative and endoplasmic reticulum (ER) stress pathways played crucial regulatory roles in HG-induced lipophagy activation and HG-induced changes of lipid metabolism. Further investigation found that HG-activated lipophagy and HG-induced changes of lipid metabolism were via enhancing carbohydrate response element-binding protein (ChREBP) DNA binding capacity at PPARγ promoter region, which in turn induced transcriptional activation of the key genes related to lipogenesis and autophagy. The present study, for the first time, revealed the novel mechanism for lipophagy mediating HCD-induced changes of lipid metabolism by oxidative stress and ER stress, and ChREBP/PPARγ pathways. Our study provided innovative evidence for the direct relationship between carbohydrate and lipid metabolism via ChREBP/PPARγ pathway.

90 citations