scispace - formally typeset
Search or ask a question
Author

Shinichi Matsumoto

Bio: Shinichi Matsumoto is an academic researcher from Toyota. The author has contributed to research in topics: Catalysis & Exhaust gas. The author has an hindex of 21, co-authored 158 publications receiving 1871 citations. Previous affiliations of Shinichi Matsumoto include Nagoya Institute of Technology & Tokyo Institute of Technology.
Topics: Catalysis, Exhaust gas, Oxide, Noble metal, NOx


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors developed a hydrogen generator that generates high purity hydrogen gas from the aqueous solution of sodium borohydride, NaBH 4, using a Pt-LiCoO 2 -coated honeycomb monolith.

165 citations

Journal ArticleDOI
TL;DR: The “intelligent” catalyst system of Daihatsu shows in-built structural reversibility of the noble metal component of Pt-based three-way catalysts (TWCs), and the conventional approach to redispersion and reactivation is highly unsuitable on many counts for “on-board” redisp immersion and regeneration of TWCs.
Abstract: Supported precious metals, such as platinum (Pt), rhodium (Rh), and palladium (Pd), are used to facilitate many industrial catalytic processes. Pt in particular is found at the core of catalysts used throughout the petrochemical industry: from bifunctional catalysts (isomerization/dehydrogenation) used for refining of hydrocarbon fuel stocks, to three-way (CO and hydrocarbon oxidation/NOx reduction) conversions within car exhausts. In this latter, ubiquitous application— commercialized in the USA and Japan in 1977—Pt has always been a pivotal component in the abatement of harmful gas emissions from gasolineor diesel-driven engines. The ever-increasing appreciation of the damage that noxious gas emissions are doing to our environment and the finite availability of noble metals provide strong drivers for the continued study and optimization of the behavior of Pt-based three-way catalysts (TWCs). Central to technological progress in this area is a fundamental understanding of how these materials behave, which may allow us to stop them degrading or deactivating during operation. A longstanding problem, affecting many applications that use highly dispersed metal nanoparticles, is loss of active surface area in the metal components as a result of “sintering”. This is a particularly pernicious problem in applications in which catalysts have to experience high temperatures—in excess of 800 8C in the case of modern car catalysts. This deleterious process causes the particle size of the metal to increase massively—through either particle diffusion or agglomeration or through “ripening” processes. The result is that a large fraction of the active metal is effectively “hidden away” within the bulk of these larger particles where it cannot be used to affect the desired chemical conversions that occur on the particle surface. This central issue of exhaust catalyst deactivation has long been recognized in the hydrocarbon reforming and emission abatement industries. In the former industry, “oxidative redispersion” has been utilized to reverse the effects of sintering and regenerate spent Pt-based reforming catalysts. However, whereas other noble metal particles such as Pd or Rh can be effectively redispersed by gaseous oxygen at certain temperatures, this method is efficient for Pt catalysts only when Cl is present either in the catalyst formulation or as an adjunct added during the redispersion process: in the absence of Cl, redispersion in Pt/Al2O3 by oxygen is limited both to a narrow temperature window (of around 500 8C) and a low level of redispersion. 6] Further, a continuous oxidative treatment over time is required for this redispersion process. Exhaust gases exiting from gasoline engines change quickly and dramatically during operation. Temperatures can rise transiently to around 1000 8C, and the exhaust gas composition itself fluctuates quickly between oxidative and reductive compositions. Clearly, the conventional approach to redispersion and reactivation is highly unsuitable on many counts for “on-board” redispersion and regeneration of TWCs. Other regeneration phenomena have recently been shown in some related cases. The “intelligent” catalyst system of Daihatsu shows in-built structural reversibility of the noble metal component. In this case, it is the structure of the perovskite support that provides the foundation for this extremely elegant piece of applied catalyst design. The possibility of forming very large particles is intrinsically reduced and, under some circumstances, this technology has been successfully commercialized. However, this approach is very much dependent upon the structure of a particular and low surface area support material and is limited in this sense. [*] Dr. Y. Nagai, K. Dohmae, T. Tanabe, Dr. H. Shinjoh TOYOTA Central R&D Labs., Inc. Nagakute, Aichi 480-1192 (Japan) Fax: (+ 81)561-63-6150 E-mail: e1062@mosk.tytlabs.co.jp

160 citations

Journal ArticleDOI
TL;DR: In a closed pressure vessel, the reaction of sodium borohydride (NaBH 4 ) with Pt-LiCoO 2 catalyst and a stoichiometric amount of water drastically increases the pressure owing to the generation of large quantities of hydrogen gas by synergism of hydrogen pressure and the catalyst as discussed by the authors.

155 citations

Journal ArticleDOI
TL;DR: The gravimetric and the volumetric hydrogen densities increased with increasing water added (H2O/LiBH4) followed by a decrease as discussed by the authors, and the densities reached their maximum values at H 2O/H2H4=13.

126 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities in a unifying manner.
Abstract: Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal–support interaction, and metal–reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results o...

2,700 citations

Journal ArticleDOI
TL;DR: The future of a particularly promising class of materials for hydrogen storage, namely the catalytically enhanced complex metal hydrides, is discussed and the predictions are supported by thermodynamics considerations, calculations derived from molecular orbital (MO) theory and backed up by simple chemical insights and intuition.
Abstract: This review focuses on key aspects of the thermal decomposition of multinary or mixed hydride materials, with a particular emphasis on the rational control and chemical tuning of the strategically important thermal decomposition temperature of such hydrides, Tdec. An attempt is also made to predict the thermal stability of as-yet unknown, elusive or even unknown hydrides. The future of a particularly promising class of materials for hydrogen storage, namely the catalytically enhanced complex metal hydrides, is discussed. The predictions are supported by thermodynamics considerations, calculations derived from molecular orbital (MO) theory and backed up by simple chemical insights and intuition.

1,404 citations

Journal ArticleDOI
TL;DR: Different methods for hydrogen storage are discussed, including high-pressure and cryogenic-liquid storage, adsorptive storage on high-surface-area adsorbents, chemical storage in metal hydride and complex hydrides, and storage in boranes.
Abstract: Hydrogen is a promising energy carrier in future energy systems. However, storage of hydrogen is a substantial challenge, especially for applications in vehicles with fuel cells that use proton-exchange membranes (PEMs). Different methods for hydrogen storage are discussed, including high-pressure and cryogenic-liquid storage, adsorptive storage on high-surface-area adsorbents, chemical storage in metal hydrides and complex hydrides, and storage in boranes. For the latter chemical solutions, reversible options and hydrolytic release of hydrogen with off-board regeneration are both possible. Reforming of liquid hydrogen-containing compounds is also a possible means of hydrogen generation. The advantages and disadvantages of the different systems are compared.

1,222 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the fundamentals underlying the reduction of oxygen on platinum and its alloys, and report the ORR activity of Pt5La for the first time, which shows a 3.5-to 4.5fold improvement in activity over Pt in the range 0.9 to 0.87 V.
Abstract: The high cost of low temperature fuel cells is to a large part dictated by the high loading of Pt required to catalyse the oxygen reduction reaction (ORR). Arguably the most viable route to decrease the Pt loading, and to hence commercialise these devices, is to improve the ORR activity of Pt by alloying it with other metals. In this perspective paper we provide an overview of the fundamentals underlying the reduction of oxygen on platinum and its alloys. We also report the ORR activity of Pt5La for the first time, which shows a 3.5- to 4.5-fold improvement in activity over Pt in the range 0.9 to 0.87 V, respectively. We employ angle resolved X-ray photoelectron spectroscopy and density functional theory calculations to understand the activity of Pt5La.

995 citations

Journal ArticleDOI
Zhi Li1, Shufang Ji1, Yiwei Liu1, Xing Cao1, Shubo Tian1, Yuanjun Chen1, Zhiqiang Niu1, Yadong Li1 
TL;DR: The roles of nanoparticles and isolated single atom sites in catalytic reactions are surveyed and the challenges and opportunities of well-defined materials for catalyst development are highlighted, gaining a fundamental understanding of their active sites.
Abstract: The use of well-defined materials in heterogeneous catalysis will open up numerous new opportunities for the development of advanced catalysts to address the global challenges in energy and the environment. This review surveys the roles of nanoparticles and isolated single atom sites in catalytic reactions. In the second section, the effects of size, shape, and metal-support interactions are discussed for nanostructured catalysts. Case studies are summarized to illustrate the dynamics of structure evolution of well-defined nanoparticles under certain reaction conditions. In the third section, we review the syntheses and catalytic applications of isolated single atomic sites anchored on different types of supports. In the final part, we conclude by highlighting the challenges and opportunities of well-defined materials for catalyst development and gaining a fundamental understanding of their active sites.

661 citations