scispace - formally typeset
Search or ask a question
Author

Shinji Hashimoto

Bio: Shinji Hashimoto is an academic researcher. The author has contributed to research in topics: Horseradish peroxidase & Raman spectroscopy. The author has an hindex of 11, co-authored 13 publications receiving 1144 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the synthesis and characterization of μ-η 2 : η 2 peroxo dinuclear copper(II) complexes which to oxyhemocyanin (or oxytyrosinase) in their physicochemical properties are presented.
Abstract: The synthesis and characterization of μ-η 2 :η 2 peroxo dinuclear copper(II) complexes which to oxyhemocyanin (or oxytyrosinase) in their physicochemical properties are presented. The low-temperature reaction of a di-μ-hydroxo copper(II) complex [Cu(HB(3,5-i-Pr 2 pz) 3 )] 2 (OH) 2 (8) with H 2 O 2 gave a μ-peroxo complex [Cu(HB(3,5-i-Pr 2 pz) 3 )] 2 (O 2 ) (6)

571 citations

Journal ArticleDOI
TL;DR: It is concluded that this hydrogen-bonded proton plays an important part in the oxygen exchange mechanism of horseradish peroxidase and that alkaline deactivation of this enzyme can be attributed to the lack of a hydrogen- bonding proton at high pH.
Abstract: Raman spectroscopic studies of compound II of horseradish peroxidase show that the oxygen atom in the FeIV = O group of the heme is rapidly exchanged in H2O at pH 7.0 but not in an alkaline solution (pH 11.0). This conclusion is based on studies of shift in the FeIV = O stretching mode of compound II in H2(18)O; further studies show that the FeIV = O heme is hydrogen-bonded to an amino acid residue of the protein in neutral solutions but not in the alkaline solution. Deprotonation of this residue takes place with the midpoint pH at 8.8 and accordingly corresponds to the so-called heme-linked ionization. It is concluded that this hydrogen-bonded proton plays an important part in the oxygen exchange mechanism. From this it seems clear that this hydrogen-bonded proton has an essential role in the acid/base catalysis of this enzyme and that alkaline deactivation of this enzyme can be attributed to the lack of a hydrogen-bonded proton at high pH.

110 citations

Journal ArticleDOI
TL;DR: In this article, a linear inverse correlation between O-O and Fe{sup II-O{sub 2}) frequencies similar to that between {nu}(CO) and {nu](Fe{sup 2-CO), but the data from heme proteins fall off the line.
Abstract: Resonance Raman (RR) and visible absorption spectra were observed for autoxidation intermediates of ferrous tetramesitylporphyrin ((TMP)Fe{sup II}) to the ferric hydroxy derivative ((TMP)Fe{sup III}OH) via (TMP)Fe{sup II}O{sub 2}, (TMP)Fe{sup III}OOFe{sup III}(TMP), and (TMP)Fe{sup IV}{double bond}O. The O-O stretching ({nu}(O{sub 2})) and Fe{sup II}-O{sub 2} stretching ({nu}(Fe{sup II}-O{sub 2})) Raman bands were simultaneously observed at 1,171 and 522 cm{sup {minus}1}, respectively, for the (TMP)Fe{sup II}O{sub 2} in toluene solution at {minus}100{degree}C for the first time. The present data together with the reported IR data for the solution samples indicate a linear inverse correlation between {nu}(O{sub 2}) and {nu}(Fe{sup II}-O{sub 2}) frequencies similar to that between {nu}(CO) and {nu}(Fe{sup II}-CO), but the data from heme proteins fall off the line.

54 citations

Journal ArticleDOI
TL;DR: The v10 frequency suggested the six-coordinate high-spin structure of heme for native LPO in contrast with the five-coordinators for HRP, and the v4 frequency indicated an appreciable donation of electrons from the substrate or inhibitor to the porphyrin LUMO and thus their direct interaction with the heme group.
Abstract: Resonance Raman scattering from cow milk lactoperoxidase (LPO) and its complexes with various electron donors and inhibitors was investigated. The Raman spectrum of LPO is strikingly close to that of hog intestinal peroxidase but distinctly dissimilar to that of horseradish peroxidase (HRP). The v10 frequency suggested the six-coordinate high-spin structure of heme for native LPO in contrast with the five-coordinate high-spin structure for HRP. For the v10 band, benzohydroxamic acid caused a frequency shift with HRP but not with LPO. Guaiacol, o-toluidine, and histidine brought about a frequency shift of the v4 mode for LPO but not for HRP. The frequency shift was restored upon removal of the substrate or inhibitor by dialysis. The down shift of the v4 frequency is considered to represent an appreciable donation of electrons from the substrate or inhibitor to the porphyrin LUMO and thus their direct interaction with the heme group. From the relative intensity of the shifted and unshifted v4 lines, the dissociation constant was determined to be Kd = 52 mM for guaiacol and Kd = 87 mM for histidine at pH 7.4. The binding of histidine was relatively retarded in the presence of sulfate anion (Kd = 150 mM for 0.53 M sulfate present), and imidazole alone yielded no frequency shift, indicating the binding of the carboxyl group of histidine to the protein cationic site on one hand and a weak charge-transfer interaction between the imidazole group and the heme group on the other.

54 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Copper sites have historically been divided into three classes based on their spectroscopic features, which reflect the geometric and electronic structure of the active site: type 1 or blue copper, type 2 (T2) or normal copper, and type 3 (T3) or coupled binuclear copper centers.
Abstract: Copper is an essential trace element in living systems, present in the parts per million concentration range. It is a key cofactor in a diverse array of biological oxidation-reduction reactions. These involve either outer-sphere electron transfer, as in the blue copper proteins and the Cu{sub A} site of cytochrome oxidase and nitrous oxide redutase, or inner-sphere electron transfer in the binding, activation, and reduction of dioxygen, superoxide, nitrite, and nitrous oxide. Copper sites have historically been divided into three classes based on their spectroscopic features, which reflect the geometric and electronic structure of the active site: type 1 (T1) or blue copper, type 2 (T2) or normal copper, and type 3 (T3) or coupled binuclear copper centers. 428 refs.

3,241 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the same alkylhydridoplatinum(IV) complex is the intermediate in the reaction of ethane with platinum(II) σ-complexes.
Abstract: ion. The oxidative addition mechanism was originally proposed22i because of the lack of a strong rate dependence on polar factors and on the acidity of the medium. Later, however, the electrophilic substitution mechanism also was proposed. Recently, the oxidative addition mechanism was confirmed by investigations into the decomposition and protonolysis of alkylplatinum complexes, which are the reverse of alkane activation. There are two routes which operate in the decomposition of the dimethylplatinum(IV) complex Cs2Pt(CH3)2Cl4. The first route leads to chloride-induced reductive elimination and produces methyl chloride and methane. The second route leads to the formation of ethane. There is strong kinetic evidence that the ethane is produced by the decomposition of an ethylhydridoplatinum(IV) complex formed from the initial dimethylplatinum(IV) complex. In D2O-DCl, the ethane which is formed contains several D atoms and has practically the same multiple exchange parameter and distribution as does an ethane which has undergone platinum(II)-catalyzed H-D exchange with D2O. Moreover, ethyl chloride is formed competitively with H-D exchange in the presence of platinum(IV). From the principle of microscopic reversibility it follows that the same ethylhydridoplatinum(IV) complex is the intermediate in the reaction of ethane with platinum(II). Important results were obtained by Labinger and Bercaw62c in the investigation of the protonolysis mechanism of several alkylplatinum(II) complexes at low temperatures. These reactions are important because they could model the microscopic reverse of C-H activation by platinum(II) complexes. Alkylhydridoplatinum(IV) complexes were observed as intermediates in certain cases, such as when the complex (tmeda)Pt(CH2Ph)Cl or (tmeda)PtMe2 (tmeda ) N,N,N′,N′-tetramethylenediamine) was treated with HCl in CD2Cl2 or CD3OD, respectively. In some cases H-D exchange took place between the methyl groups on platinum and the, CD3OD prior to methane loss. On the basis of the kinetic results, a common mechanism was proposed to operate in all the reactions: (1) protonation of Pt(II) to generate an alkylhydridoplatinum(IV) intermediate, (2) dissociation of solvent or chloride to generate a cationic, fivecoordinate platinum(IV) species, (3) reductive C-H bond formation, producing a platinum(II) alkane σ-complex, and (4) loss of the alkane either through an associative or dissociative substitution pathway. These results implicate the presence of both alkane σ-complexes and alkylhydridoplatinum(IV) complexes as intermediates in the Pt(II)-induced C-H activation reactions. Thus, the first step in the alkane activation reaction is formation of a σ-complex with the alkane, which then undergoes oxidative addition to produce an alkylhydrido complex. Reversible interconversion of these intermediates, together with reversible deprotonation of the alkylhydridoplatinum(IV) complexes, leads to multiple H-D exchange

2,505 citations

Journal ArticleDOI
TL;DR: The authors present here a classification and structure/function analysis of native metal sites based on these functions, and the coordination chemistry of metalloprotein sites and the unique properties of a protein as a ligand are briefly summarized.
Abstract: For present purposes, a protein-bound metal site consists of one or more metal ions and all protein side chain and exogenous bridging and terminal ligands that define the first coordination sphere of each metal ion. Such sites can be classified into five basic types with the indicated functions: (1) structural -- configuration (in part) of protein tertiary and/or quaternary structure; (2) storage -- uptake, binding, and release of metals in soluble form: (3) electron transfer -- uptake, release, and storage of electrons; (4) dioxygen binding -- metal-O{sub 2} coordination and decoordination; and (5) catalytic -- substrate binding, activation, and turnover. The authors present here a classification and structure/function analysis of native metal sites based on these functions, where 5 is an extensive class subdivided by the type of reaction catalyzed. Within this purview, coverage of the various site types is extensive, but not exhaustive. The purpose of this exposition is to present examples of all types of sites and to relate, insofar as is currently feasible, the structure and function of selected types. The authors largely confine their considerations to the sites themselves, with due recognition that these site features are coupled to protein structure at all levels. In themore » next section, the coordination chemistry of metalloprotein sites and the unique properties of a protein as a ligand are briefly summarized. Structure/function relationships are systematically explored and tabulations of structurally defined sites presented. Finally, future directions in bioinorganic research in the context of metal site chemistry are considered. 620 refs.« less

2,242 citations

Journal ArticleDOI
TL;DR: This review presents in depth discussions of all these classes of Cu enzymes and the correlations within and among these classes, as well as the present understanding of the enzymology, kinetics, geometric structures, electronic structures and the reaction mechanisms these have elucidated.
Abstract: Based on its generally accessible I/II redox couple and bioavailability, copper plays a wide variety of roles in nature that mostly involve electron transfer (ET), O2 binding, activation and reduction, NO2− and N2O reduction and substrate activation. Copper sites that perform ET are the mononuclear blue Cu site that has a highly covalent CuII-S(Cys) bond and the binuclear CuA site that has a Cu2S(Cys)2 core with a Cu-Cu bond that keeps the site delocalized (Cu(1.5)2) in its oxidized state. In contrast to inorganic Cu complexes, these metalloprotein sites transfer electrons rapidly often over long distances, as has been previously reviewed.1–4 Blue Cu and CuA sites will only be considered here in their relation to intramolecular ET in multi-center enzymes. The focus of this review is on the Cu enzymes (Figure 1). Many are involved in O2 activation and reduction, which has mostly been thought to involve at least two electrons to overcome spin forbiddenness and the low potential of the one electron reduction to superoxide (Figure 2).5,6 Since the Cu(III) redox state has not been observed in biology, this requires either more than one Cu center or one copper and an additional redox active organic cofactor. The latter is formed in a biogenesis reaction of a residue (Tyr) that is also Cu catalyzed in the first turnover of the protein. Recently, however, there have been a number of enzymes suggested to utilize one Cu to activate O2 by 1e− reduction to form a Cu(II)-O2•− intermediate (an innersphere redox process) and it is important to understand the active site requirements to drive this reaction. The oxidases that catalyze the 4e−reduction of O2 to H2O are unique in that they effectively perform this reaction in one step indicating that the free energy barrier for the second two-electron reduction of the peroxide product of the first two-electron step is very low. In nature this requires either a trinuclear Cu cluster (in the multicopper oxidases) or a Cu/Tyr/Heme Fe cluster (in the cytochrome oxidases). The former accomplishes this with almost no overpotential maximizing its ability to oxidize substrates and its utility in biofuel cells, while the latter class of enzymes uses the excess energy to pump protons for ATP synthesis. In bacterial denitrification, a mononuclear Cu center catalyzes the 1e- reduction of nitrite to NO while a unique µ4S2−Cu4 cluster catalyzes the reduction of N2O to N2 and H2O, a 2e− process yet requiring 4Cu’s. Finally there are now several classes of enzymes that utilize an oxidized Cu(II) center to activate a covalently bound substrate to react with O2. Figure 1 Copper active sites in biology. Figure 2 Latimer Diagram for Oxygen Reduction at pH = 7.0 Adapted from References 5 and 6. This review presents in depth discussions of all these classes of Cu enzymes and the correlations within and among these classes. For each class we review our present understanding of the enzymology, kinetics, geometric structures, electronic structures and the reaction mechanisms these have elucidated. While the emphasis here is on the enzymology, model studies have significantly contributed to our understanding of O2 activation by a number of Cu enzymes and are included in appropriate subsections of this review. In general we will consider how the covalency of a Cu(II)–substrate bond can activate the substrate for its spin forbidden reaction with O2, how in binuclear Cu enzymes the exchange coupling between Cu’s overcomes the spin forbiddenness of O2 binding and controls electron transfer to O2 to direct catalysis either to perform two e− electrophilic aromatic substitution or 1e− H-atom abstraction, the type of oxygen intermediate that is required for H-atom abstraction from the strong C-H bond of methane (104 kcal/mol) and how the trinuclear Cu cluster and the Cu/Tyr/Heme Fe cluster achieve their very low barriers for the reductive cleavage of the O-O bond. Much of the insight available into these mechanisms in Cu biochemistry has come from the application of a wide range of spectroscopies and the correlation of spectroscopic results to electronic structure calculations. Thus we start with a tutorial on the different spectroscopic methods utilized to study mononuclear and multinuclear Cu enzymes and their correlations to different levels of electronic structure calculations.

1,181 citations