scispace - formally typeset
Search or ask a question
Author

Shinya Sugiura

Bio: Shinya Sugiura is an academic researcher from University of Tokyo. The author has contributed to research in topics: MIMO & Keying. The author has an hindex of 33, co-authored 149 publications receiving 4937 citations. Previous affiliations of Shinya Sugiura include University of Southampton & Tokyo University of Agriculture and Technology.


Papers
More filters
Journal ArticleDOI
01 Jan 2014
TL;DR: In this paper, the authors present a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges.
Abstract: A key challenge of future mobile communication research is to strike an attractive compromise between wireless network's area spectral efficiency and energy efficiency. This necessitates a clean-slate approach to wireless system design, embracing the rich body of existing knowledge, especially on multiple-input-multiple-ouput (MIMO) technologies. This motivates the proposal of an emerging wireless communications concept conceived for single-radio-frequency (RF) large-scale MIMO communications, which is termed as SM. The concept of SM has established itself as a beneficial transmission paradigm, subsuming numerous members of the MIMO system family. The research of SM has reached sufficient maturity to motivate its comparison to state-of-the-art MIMO communications, as well as to inspire its application to other emerging wireless systems such as relay-aided, cooperative, small-cell, optical wireless, and power-efficient communications. Furthermore, it has received sufficient research attention to be implemented in testbeds, and it holds the promise of stimulating further vigorous interdisciplinary research in the years to come. This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM-MIMO. The paper is concluded with the description of the world's first experimental activities in this vibrant research field.

1,171 citations

01 Jan 2014
TL;DR: This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM- MIMO.
Abstract: A key challenge of future mobile communication research is to strike an attractive compromise between wire- less network's area spectral efficiency and energy efficiency. This necessitates a clean-slate approach to wireless system design, embracing the rich body of existing knowledge, espe- cially on multiple-input-multiple-ouput (MIMO) technologies. This motivates the proposal of an emerging wireless commu- nications concept conceived for single-radio-frequency (RF) large-scale MIMO communications, which is termed as SM. The concept of SM has established itself as a beneficial transmission paradigm, subsuming numerous members of the MIMO system family. The research of SM has reached sufficient maturity to motivate its comparison to state-of-the-art MIMO communica- tions, as well as to inspire its application to other emerging wireless systems such as relay-aided, cooperative, small-cell, optical wireless, and power-efficient communications. Further- more, it has received sufficient research attention to be im- plemented in testbeds, and it holds the promise of stimulating further vigorous interdisciplinary research in the years to come. This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM-MIMO. The paper is concluded with the description of the world's first experimental activities in this vibrant research field.

583 citations

Journal ArticleDOI
TL;DR: This work proposes a novel Space-Time Shift Keying (STSK) modulation scheme for Multiple-Input Multiple-Output (MIMO) communication systems, where the concept of SM is extended to include both the space and time dimensions, in order to provide a general shift-keying framework.
Abstract: Motivated by the recent concept of Spatial Modulation (SM), we propose a novel Space-Time Shift Keying (STSK) modulation scheme for Multiple-Input Multiple-Output (MIMO) communication systems, where the concept of SM is extended to include both the space and time dimensions, in order to provide a general shift-keying framework. More specifically, in the proposed STSK scheme one out of Q dispersion matrices is activated during each transmitted block, which enables us to strike a flexible diversity and multiplexing tradeoff. This is achieved by optimizing both the space-time block duration as well as the number of the dispersion matrices in addition to the number of transmit and receive antennas. We will demonstrate that the resultant equivalent system model does not impose any Inter-Channel Interference (ICI), and hence the employment of single-stream Maximum Likelihood (ML) detection becomes realistic at a low-complexity. Furthermore, we propose a Differential STSK (DSTSK) scheme, assisted by the Cayley unitary transform, which does not require any Channel State Information (CSI) at the receiver. Here, the usual error-doubling, caused by the differential decoding, gives rise to 3-dB performance penalty in comparison to Coherent STSK (CSTSK). Additionally, we introduce an enhanced CSTSK scheme, which avoids the requirement of Inter-Antenna Synchronization (IAS) between the RF chains associated with the transmit Antenna Elements (AEs) by imposing a certain constraint on the dispersion matrix design, where each column of the dispersion matrices includes only a single non-zero component. Moreover, according to the turbo-coding principle, the proposed CSTSK and DSTSK schemes are combined with multiple serially concatenated codes and an iterative bit-to-symbol soft-demapper. More specifically, the associated STSK parameters are optimized with the aid of Extrinsic Information Transfer (EXIT) charts, for the sake of achieving a near-capacity performance.

263 citations

Journal ArticleDOI
TL;DR: A comprehensive overview of the latest research achievements of SC-SM is presented, which outlines the associated transceiver design, the benefits and potential tradeoffs, the LSA aided multiuser (MU) transmission developments, the relevant open research issues as well as the potential solutions of this appealing transmission technique.
Abstract: The main limitations of employing large-scale antenna (LSA) architectures for broadband frequency-selective channels include, but are not limited to their complexity, power consumption, and the high cost of multiple radio frequency (RF) chains. Promising solutions can be found in the recently proposed family of single-carrier (SC) spatial modulation (SM) transmission techniques. Since the SM scheme’s transmit antenna (TA) activation process is carried out in the context of a SC-SM architecture, the benefits of a low-complexity and low-cost single-RF transmitter are maintained, while a high MIMO multiplexing gain can be attained. Moreover, owing to its inherent SC structure, the transmit signals of SC-SM have attractive peak power characteristics and a high robustness to RF hardware impairments, such as the RF carrier frequency offset (CFO) and phase noise. In this paper, we present a comprehensive overview of the latest research achievements of SC-SM, which has recently attracted considerable attention. We outline the associated transceiver design, the benefits and potential tradeoffs, the LSA aided multiuser (MU) transmission developments, the relevant open research issues as well as the potential solutions of this appealing transmission technique.

202 citations

Journal ArticleDOI
TL;DR: These performance investigations identify the beneficial operating region of the SIM scheme over its conventional orthogonal frequency-division multiplexing (OFDM) counterpart, hence providing general design guidelines for the SIM parameters.
Abstract: The achievable performance of subcarrier-index modulation (SIM) is analyzed in terms of its minimum Euclidean distance, constrained and unconstrained average mutual information, as well as its peak-to-average power ratio (PAPR). Our performance investigations identify the beneficial operating region of the SIM scheme over its conventional orthogonal frequency-division multiplexing (OFDM) counterpart, hence providing general design guidelines for the SIM parameters. More specifically, an SIM scheme is shown to be beneficial for the scenario of a relatively low transmission rate below 2 b/s/Hz. In addition, we demonstrate that the PAPR of the SIM scheme is comparable with that of its OFDM counterpart under the idealized simplifying assumption of having Gaussian input symbols.

188 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A HACE theorem is presented that characterizes the features of the Big Data revolution, and a Big Data processing model is proposed, from the data mining perspective, which involves demand-driven aggregation of information sources, mining and analysis, user interest modeling, and security and privacy considerations.
Abstract: Big Data concern large-volume, complex, growing data sets with multiple, autonomous sources. With the fast development of networking, data storage, and the data collection capacity, Big Data are now rapidly expanding in all science and engineering domains, including physical, biological and biomedical sciences. This paper presents a HACE theorem that characterizes the features of the Big Data revolution, and proposes a Big Data processing model, from the data mining perspective. This data-driven model involves demand-driven aggregation of information sources, mining and analysis, user interest modeling, and security and privacy considerations. We analyze the challenging issues in the data-driven model and also in the Big Data revolution.

2,233 citations

Journal ArticleDOI
TL;DR: A potential cellular architecture that separates indoor and outdoor scenarios is proposed, and various promising technologies for 5G wireless communication systems, such as massive MIMO, energy-efficient communications, cognitive radio networks, and visible light communications are discussed.
Abstract: The fourth generation wireless communication systems have been deployed or are soon to be deployed in many countries. However, with an explosion of wireless mobile devices and services, there are still some challenges that cannot be accommodated even by 4G, such as the spectrum crisis and high energy consumption. Wireless system designers have been facing the continuously increasing demand for high data rates and mobility required by new wireless applications and therefore have started research on fifth generation wireless systems that are expected to be deployed beyond 2020. In this article, we propose a potential cellular architecture that separates indoor and outdoor scenarios, and discuss various promising technologies for 5G wireless communication systems, such as massive MIMO, energy-efficient communications, cognitive radio networks, and visible light communications. Future challenges facing these potential technologies are also discussed.

2,048 citations

Journal ArticleDOI
TL;DR: An overview of 5G research, standardization trials, and deployment challenges is provided, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.
Abstract: There is considerable pressure to define the key requirements of 5G, develop 5G standards, and perform technology trials as quickly as possible. Normally, these activities are best done in series but there is a desire to complete these tasks in parallel so that commercial deployments of 5G can begin by 2020. 5G will not be an incremental improvement over its predecessors; it aims to be a revolutionary leap forward in terms of data rates, latency, massive connectivity, network reliability, and energy efficiency. These capabilities are targeted at realizing high-speed connectivity, the Internet of Things, augmented virtual reality, the tactile internet, and so on. The requirements of 5G are expected to be met by new spectrum in the microwave bands (3.3-4.2 GHz), and utilizing large bandwidths available in mm-wave bands, increasing spatial degrees of freedom via large antenna arrays and 3-D MIMO, network densification, and new waveforms that provide scalability and flexibility to meet the varying demands of 5G services. Unlike the one size fits all 4G core networks, the 5G core network must be flexible and adaptable and is expected to simultaneously provide optimized support for the diverse 5G use case categories. In this paper, we provide an overview of 5G research, standardization trials, and deployment challenges. Due to the enormous scope of 5G systems, it is necessary to provide some direction in a tutorial article, and in this overview, the focus is largely user centric, rather than device centric. In addition to surveying the state of play in the area, we identify leading technologies, evaluating their strengths and weaknesses, and outline the key challenges ahead, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.

1,659 citations

Journal ArticleDOI
TL;DR: This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment.
Abstract: Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and computing platform, which will have the challenging requirement of interconnecting the physical and digital worlds in a seamless and sustainable manner. Currently, two main factors prevent wireless network operators from building such networks: (1) the lack of control of the wireless environment, whose impact on the radio waves cannot be customized, and (2) the current operation of wireless radios, which consume a lot of power because new signals are generated whenever data has to be transmitted. In this paper, we challenge the usual “more data needs more power and emission of radio waves” status quo, and motivate that future wireless networks necessitate a smart radio environment: a transformative wireless concept, where the environmental objects are coated with artificial thin films of electromagnetic and reconfigurable material (that are referred to as reconfigurable intelligent meta-surfaces), which are capable of sensing the environment and of applying customized transformations to the radio waves. Smart radio environments have the potential to provide future wireless networks with uninterrupted wireless connectivity, and with the capability of transmitting data without generating new signals but recycling existing radio waves. We will discuss, in particular, two major types of reconfigurable intelligent meta-surfaces applied to wireless networks. The first type of meta-surfaces will be embedded into, e.g., walls, and will be directly controlled by the wireless network operators via a software controller in order to shape the radio waves for, e.g., improving the network coverage. The second type of meta-surfaces will be embedded into objects, e.g., smart t-shirts with sensors for health monitoring, and will backscatter the radio waves generated by cellular base stations in order to report their sensed data to mobile phones. These functionalities will enable wireless network operators to offer new services without the emission of additional radio waves, but by recycling those already existing for other purposes. This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment. In a nutshell, this paper is focused on discussing how the availability of reconfigurable intelligent meta-surfaces will allow wireless network operators to redesign common and well-known network communication paradigms.

1,504 citations

Journal ArticleDOI
01 Jan 2014
TL;DR: In this paper, the authors present a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges.
Abstract: A key challenge of future mobile communication research is to strike an attractive compromise between wireless network's area spectral efficiency and energy efficiency. This necessitates a clean-slate approach to wireless system design, embracing the rich body of existing knowledge, especially on multiple-input-multiple-ouput (MIMO) technologies. This motivates the proposal of an emerging wireless communications concept conceived for single-radio-frequency (RF) large-scale MIMO communications, which is termed as SM. The concept of SM has established itself as a beneficial transmission paradigm, subsuming numerous members of the MIMO system family. The research of SM has reached sufficient maturity to motivate its comparison to state-of-the-art MIMO communications, as well as to inspire its application to other emerging wireless systems such as relay-aided, cooperative, small-cell, optical wireless, and power-efficient communications. Furthermore, it has received sufficient research attention to be implemented in testbeds, and it holds the promise of stimulating further vigorous interdisciplinary research in the years to come. This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM-MIMO. The paper is concluded with the description of the world's first experimental activities in this vibrant research field.

1,171 citations